
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics: Games Engineering

Level of Detail Generation for Point
Clouds

Patrick Radner

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics: Games Engineering

Level of Detail Generation for Point Clouds

Level of Detail Generierung für
Punktwolken

Author: Patrick Radner
Supervisor: Prof. Dr. Rüdiger Westermann
Advisor: M.Sc. Henrik Masbruch
Submission Date: 15. August 2018

I confirm that this bachelor’s thesis in informatics: games engineering is my own work
and I have documented all sources and material used.

Munich, 15. August 2018 Patrick Radner

Acknowledgments

Firstly I would like to thank my adviser, Henrik Masbruch, for guiding me through
this thesis and providing me with the necessary materials and motivation. And for his
fast response times.

I would also like to thank Prof. Westermann for posting this thesis work and getting
me started with a short recap of the entire point cloud thematic.

Thanks to Markus Schuetz and the team behind Potree. A large part of this thesis is
based on their work.

Thanks to the Stanford Computer Graphics Laboratory for providing and maintaining
their 3D scanning repository [Lab18]. It provides a great variety of 3D models, which
were used to test and demonstrate the algorithms shown in this paper.

Abstract

With the increasing quality of 3D models the conventional approach of representing 3D
models as a closed polygonal surfaces looses efficiency. Point Clouds offer an alternative
by only using point samples of the 3D surface. These samples do not require connectivity
information, drastically simplifying the rendering process. In addition, data from 3D
Scans, LIDAR, etc. is often only available as point data, and would otherwise have to
be converted into a polygonal model. Point clouds can often consist of hundreds of
millions or even billions of samples. It is therefore necessary to find a way to simplify
regions that are further away from the camera in order to not draw an entire dataset
every frame. This is commonly known as Level of Detail.

This Thesis revisits the sub sampling approach presented in Potree. Afterwards we
explore clustering based simplification techniques as a way to not only use the position
of samples, but also take advantage additional information such as curvature and color.
Human-made objects often contain planar surfaces. By using geometric information as
a criterion for creating our level of detail hierarchy, we manage to drastically reduce
the sample density in such planar regions, while still being able to conserve complex
geometries.

v

Contents

Acknowledgments iii

Abstract v

1 Introduction 1
1.1 Problem Definition . 1
1.2 Structure . 1

2 Related Work 3
2.1 Octrees . 3
2.2 Subsampling . 3
2.3 Clustering . 3

3 Data Structures 5
3.1 Octrees . 5

3.1.1 Nested Octrees . 5

4 Rendering 9
4.1 Point Attributes . 9

4.1.1 Additional Shader Data . 10
4.1.2 Normal Generation . 10

4.2 Splatting . 11
4.2.1 Circular Splats . 12
4.2.2 Elliptical Splats . 12

4.3 Oriented Splats . 13
4.4 LoD Determination . 14

4.4.1 Frustum Culling . 15
4.5 Shading . 16
4.6 Blending . 17

5 Subsampling 19
5.1 Possion-Disk Subsampling . 19
5.2 Splat Size Determination . 21

5.2.1 Fixed Size per Octree Level . 21
5.2.2 Globally Fixed Size . 21
5.2.3 Adaptive Splat Size . 22

vii

Contents

6 Clustering 25
6.1 Creation . 26

6.1.1 Region Growing . 26
6.1.2 Attributes and Distance Functions 27
6.1.3 Feature-space Distance Function vs. per Attribute Threshold . . . 30

6.2 Computing Representatives . 31
6.2.1 Cluster Centers . 32

6.3 Rendering . 33
6.3.1 Level of Detail . 34

7 Implementation 35
7.1 DirectX 11 . 35
7.2 Memory Management . 36
7.3 PLY Format . 36
7.4 MeshLab . 36
7.5 External Libraries . 36

7.5.1 Eigen 3 . 37
7.5.2 AntTweakBar . 37
7.5.3 tinyply . 37

8 Results and Comparison 39
8.1 Performance . 40
8.2 Circular vs. Elliptical Surfels . 40
8.3 Showcase . 40

9 Conclusion and Future Work 47

List of Figures 49

List of Tables 51

List of Algorithms 53

Bibliography 55

viii

1 Introduction

Point clouds represent three-dimensional surfaces as a set of points, so-called surfels
(surface elements) [Pfi+00]. In contrast to conventional triangle-based meshes, these
surfels do not contain any form of neighborhood or connectivity information. This
makes them preferable in regions of high geometrical complexity, where a large number
of primitives is needed to adequately represent the given surface.

The rendering pipeline is further simplified by storing surface information such as
color or normals for each point, thereby removing the need for texture mapping.

In addition various 3D scanning methods, such as laser scanning, LIDAR, some 3D
camera reconstruction techniques, etc. only output point clouds. It can therefore be
preferable to draw the point cloud directly instead of adding other – costly – preprocess-
ing steps before displaying the scanned object. [Sch16; Pfi+00; RL01; Bot+05]

The constantly improving precision of these scanning techniques leads to a higher
sample count per surface area which in turn results in point clouds becoming larger and
larger. Modern point clouds often consists of hundreds of millions or even billions of
point-samples. This means it is not possible to draw the entire point cloud each frame. It
is therefore necessary to simplify them in areas of lower interest to the user, i.e. further
away from the camera, as well as enable efficient ways to decide which parts of the point
cloud are actually visible on screen (culling).

1.1 Problem Definition

Modern point clouds can contain up to several billion samples. Current graphics
hardware is not capable of drawing such a large amount of primitives at interactive
frame rates. The goal of this thesis is to present different ways to implement a Level of
Detail (LoD) hierarchy, in order to manage point clouds.

In a modern human-made world, there are lots of flat areas. Point clouds usually
fall short, when it comes to representing planes, as a large amount of almost identical
samples is required, to represent planar surfaces. It is therefore desirable, to find an
approach, that can deal with planes in a point cloud, while still preserving interesting
features, like geometry or color.

1.2 Structure

Chapter 2 will provide an overview of related work. An explanation of the octree and
nested octree data structures used will be given in Chapter 3. In Chapter 4 we will

1

1 Introduction

explain how point primitives are rendered. Chapter 5 will review the Level of Detail
approach presented inSchütz [Sch16] and Chapter 6 will present a clustering based
alternative. In Chapter 7 we will mention implementation specific details, such as used
libraries. Chapter 8 will compare performance in generation of the LoD hierarchy, as
well as performance and quality during rendering. Finally, we will offer a conclusion
and mention further possible improvements and additions to our implementation in
Chapter 9.

2

2 Related Work

Using points as primitives was first introduced by Levoy and Whitted [LW85]. QSplat, by
Rusinkiewicz and Levoy [RL01], was the first point based system capable of rendering
hundreds of millions of points, by utilizing a bounding sphere hierarchy. A high
quality approach for surface splatting was proposed in Zwicker, Pfister, Baar, and Gross
[Zwi+01]. A summary of point cloud rendering techniques was provided by Alexa,
Darmstadt, Gross, et al. [Ale+02].

Pauly, Gross, and L. P. Kobbelt [PGK02] compared simplification techniques for point
clouds based on subsampling, clustering or particle simulation. In Pfister, Zwicker, Baar,
and Gross [Pfi+00] surfels are stored in an octree hierarchy. A hybrid approach using
both point and rasterization based rendering was developed by Reichl, Chajdas, Bürger,
and Westermann [Rei+].

2.1 Octrees

The concept of octrees was introduced by Meagher [Mea80]. Wimmer and Scheiblauer
[WS06] then introduced nested octrees, which build the basis for the level of detail
hierarchies implemented in this thesis. Nested octrees are also used in Schütz [Sch16].
Modifiable nested octrees (MNOs) were developed by Scheiblauer [Sch14] and allowed
to select, insert and delete samples from a point cloud.

2.2 Subsampling

The subsampling approach presented in this thesis is mainly based on Schütz [Sch16].
Approaches with a similar concept were also used in Scanopy [Sch14]. Stochastic
sampling for computer graphics was introduced by Cook [Coo86] in the context of ray
tracing. Possion disk sampling, which is used in [Sch16], was presented by McCool and
Fiume [MF92].

2.3 Clustering

Next to simplification and level of detail generation, clustering approaches can also be
used for feature extraction. Feature extraction algorithms generally look for a lot fewer
clusters than simplification approaches and can thus not be used for our purposes.

Clustering approaches for generating a level of detail hierarchy in point clouds were
implemented by, for example, Fan, Huang, and Peng [FHP13] and Moenning and

3

2 Related Work

Dodgson [MD03]. In Shi, Liang, and Liu [SLL11] the kmeans algorithm was used
to simplify point clouds, a maximum normal deviation was also considered in the
clustering approach. Song and Feng [SF08] proposed an approach in which the goal is to
simplify a point cloud a set maximum number of points. A globally optimal clustering
approach, as well as a hole-filling method, was proposed in Wu and L. Kobbelt [WK04].
The Extremal Points Optimal Sphere (EPOS) algorithm was introduced by Larsson
[Lar08] and provides a fast method for finding bounding spheres for a given set of
points.

4

3 Data Structures

Our algorithms use different variations of the octree data structure to create a spatial
hierarchy, which is in turn used to determine the level of detail in a specific region. We
will show, how such a data structure is created and how it can be accessed.

3.1 Octrees

Octrees are a simple way to partition 3D space. They were first introduced by Meagher
[Mea80]. Each node in an octree represents an axis-aligned cube. The root node hereby
is equal to the bounding cube of a given object. As long as a certain criterion, such as
a minimum number of points per node, is met, nodes are split into 8 children. This is
shown in Figure 3.1.

Figure 3.1: Left: Bounding cube divided into octree. Right: Tree representation. Source:
[Wik18]

3.1.1 Nested Octrees

Each node in a nested octrees contains a 3-dimensional grid with at most one sample
per grid cell. Points that would be mapped to the same grid cell will be stored in the
child node. The concept of was introduced by Wimmer and Scheiblauer [WS06] and is
also the principle structure used in Schütz [Sch16], who also showed, that in practice a
resolution of 1283 tends to provide a good balance between points per node and overall
node count. Algorithm 1 shows, how a nested octree data structure would be created

5

3 Data Structures

for a given point cloud. Since the grid structure will only be sparsely occupied it is
implemented using a hash map [Sch14; Sch16]. The key is created by calculating the
3D index of the cell occupied by a given point and then flattening it to one dimension.
This is shown in Line 6 and 7. Insert and delete options for additional samples are not
provided at this point, seeing as we are only working with static point clouds.

As to not unnecessarily create lots of small nodes, all points that would be moved to
the child nodes are stored in temporary buffers corresponding to the child node they
would be added to [Sch16]. A node is only expanded, if the number of points in its
buffer exceeds a certain threshold. Assuming a somewhat even distribution of samples
a value of 500 has been found to give the desired results.

Algorithm 1 Nested Octree Create

1: procedure create(Node node, Point[] pointCloud, BoundingCube bounds)
2: if node = root then
3: bounds← boundingCube(pointCloud)

4: for each v in pointCloud do
5: vc← v− bounds.start
6: indexVector← floor(vc/bounds.length/gridResolution)
7: gridIndex← indexVector.x + 128 ∗ indexVector.y + 1282 ∗ indexVector.z
8: if canInsert(node.data, gridIndex, v) then
9: node.data[gridIndex]← v

10: else
11: childIndex← 0
12: if vc.x < bounds.length/2 then
13: childIndex← childIndex + 1
14: if vc.y < bounds.length/2 then
15: childIndex← childIndex + 2
16: if vc.z < bounds.length/2 then
17: childIndex← childIndex + 4
18: bu f f er[childIndex].insert(v)

19: for i← 1 . . . 8 do
20: if size(bu f f er[i] > threshhold then
21: childBounds← subCube(bounds, i)
22: create(node.children[i], buffer[i], childBounds)
23: else
24: node.data.insert(bu f f er[i])

After all points have been hashed into the grid or passed onto child nodes, they are
then stored in a vector, in order to save space and allow a simpler handling for tasks,
such as uploading them to video memory. Once the entire structure is created, it is
stored breadth first into a vector for increased memory efficiency during traversal. This
is shown in Algorithm 2.

6

3.1 Octrees

Algorithm 2 Nested Octree to Vector

1: procedure toVector(Vector out, dataFunction)
2: curentIndex← 0
3: nodeBuffer← root
4: while ¬empty(nodeBuffer) do
5: currentNode← nodeBuffer.popFront()
6: vectorNode.data← dataFunction(currentNode.data)
7: vectorNode. f irstChildIndex ← size(nodeBuffer)
8: vectorNode.children← 0
9: for i← 1 . . . 8 do

10: if exists(currentNode.children[i]) then
11: vectorNode.children← vectorNode.children OR i
12: nodeBuffer.pushBack(currentNode.children[i])

13: out[currentIndex]← vectorNode
14: curentIndex← curentIndex + 1

7

4 Rendering

This chapter will explain how point clouds are rendered. As already mentioned, point
clouds do not contain any form of neighborhood context. Instead every sample in a
point cloud represents a small piece of surface area, also referred to as surfel. During
rendering, surfels are drawn as small surfaces via a method called splatting [Bot+05;
Zwi+01]. We will also determine, which nodes of a level of detail hierarchy, need to be
rendered.

4.1 Point Attributes

Triangle-based rendering often uses techniques such as texture or normal mapping,
where surface information is stored in external textures and sampled per frame. Point
clouds simplify the process of gathering such information by storing it directly with each
sample. This radically simplifies the entire rendering pipeline. Per sample attributes can
contain:

• Position: A 3D vector placing the point in 3D space. This is the only necessary
attribute. It ultimately determines where the point will be seen on screen.

• Color: The surface color of the sample. Not every point cloud possesses a color
value. Results from laser scans, for example, usually don’t have color values
assigned to them. In our implementation a points color is stored in a 4 float RGBA
vector. The alpha channel is not used.

• Normal: The normal vector to the tangent plane at the samples location. Most
scanning methods do not provide normal information. Normals can however be
approximated, as mentioned in subsection 4.1.2. Normals are stored in a 3D float
vector. They are per definition always have unit length.

• Radius: In our clustering implementation different surfels at the same level
of detail can have different sizes. Therefore each surfel has to store its size.
Our implementation uses one float to store this value. Size information could be
encoded, by scaling the normal vector. This would however require a normalization
step per surfel to recover the Radius, which was deemed to costly.

• Major and Minor: When dealing with elliptical surfels, these two 3D vectors
define direction and length of the major and minor semi-axis.

9

4 Rendering

• Level of Detail: The sub-sampling approach presented by Schütz [Sch16] and
shown in chapter 5 requires the level of detail to be calculated per sample per
frame.

4.1.1 Additional Shader Data

In order to render a point cloud, additional data is needed:

• World View Projection Matrix: A 4× 4 matrix used to transform objects from
local space to screen space. It combines the world matrix, which performs rotation
and translation, the camera matrix, which transforms the space so, that the camera
is at the origin, looking along the Z-axis and finally the projection matrix used for
perspective.

• World Matrix: A points position in world space needs to be known, if we want
to illuminate our scene. It can be calculated by applying this 4× 4 matrix. The
world matrix is contained in the World View Projection matrix. If no shading is
performed, this matrix is not required.

• Light Direction: Our demo world is illuminated by a single directional light
source. This vector describes, from which direction the light comes will hit a
surface.

• Camera Position: For specular lighting, as used in the Phong illumination model,
the position of the camera needs to be known.

• Max LoD: The maximum depth of the level of detail hierarchy described by our
octree.

• Splat size: The subsampling approach described in chapter 5 assumes globally
consistent sample density. This means each sample of the original dataset has the
same radius.

• Bounding Box: The bounding box of the entire object. It is used in the subsam-
pling approach described in chapter 5, when determining the splat size in a given
region.

4.1.2 Normal Generation

Most point clouds do not contain normal information. Our implementation uses normals
for illumination. More importantly they can be used to determine surface complexity,
which is considered in our clustering algorithm. Normals can be computed by fitting a
plane to the k-nearest neighbors for each sample. This can be done by minimizing the
least squares error given in Equation 4.1, representing the sum of projected distances
(see also [WK04]). Our implementation is not capable of normal generation. Instead

10

4.2 Splatting

Figure 4.1: Image depicting, how a splat can be generated, given a position and a radius

point clouds without normal information are pre-processed in MeshLab, where per
point normals can be computed.

ELS(n) = ∑
v∈k−NN(c)

n · (v− c) (4.1)

4.2 Splatting

Splatting [Bot+05; Zwi+01] describes the process of turning a point sample into a small
surface area, a so-called splat. For quadratic and spherical splats the size of the area is
either given by the radius attribute or calculated via Equation 5.2. For elliptical splats it
is given by the length of the major and minor semi-axis. Splats are generally rendered
as squares or quads. In the pixel shader they can be turned into circles or ellipses by
discarding certain pixels. Splatting is performed in the geometry shader by creating
four points in a triangle strip. This can be done for example with the code given in
Listing 4.1. The resulting quad splat can be seen in Figure 4.1.

Listing 4.1: HLSL code to generate a splat from position and radius

output.pos = mul(input[0].pos, wvp);

output.pos.xy += float2(-1, 1) * radius;

output.tex.xy = float2(-1, -1);

OutStream.Append(output);

output.pos.y -= radius * 2;

output.tex.xy = float2(1, -1);

OutStream.Append(output);

output.pos.xy += float2(radius * 2, radius * 2);

11

4 Rendering

Figure 4.2: Left: Quad Splats, Right: Circle Splats, Model: Dragon_perlin_color

output.tex.xy = float2(-1, 1);

OutStream.Append(output);

output.pos.y -= radius * 2;

output.tex.xy = float2(1, 1);

OutStream.Append(output);

4.2.1 Circular Splats

Circular splats generally provide sharper edges. This can be seen in Figure 4.2. When
working with point clouds in general, single samples are usually assumed to be small
spheres or oriented circles in three dimensional space. For example the in chapter 6
presented clustering algorithm can compute spherical clusters (by ignoring normal
information), which can be described by a center and a radius. By using circular splats,
the resulting image tends to be closer to the results of the computed representatives.

In order to draw circular splats the texture coordinates, which were added in the
geometry shader (Listing 4.1), are used. For a pixel to lie within the circle of its splat
Equation 4.2 must be fulfilled. Otherwise the pixel will be discarded. This however
results in circular splats needing to be slightly larger and some computational overhead.

tex.x2 + tex.y2 < 1 (4.2)

4.2.2 Elliptical Splats

Elliptical surfels can be generated using the clustering algorithm described in chapter 6.
They are described by a major and a minor semi-axis. During splatting the four

12

4.3 Oriented Splats

Figure 4.3: Elliptical splat (blue) drawn on a rectangle(black) determined by a surfels
major and minor semi-axis (red). The texture coordinates in the corners are
used to determine if a pixel lies within the ellipse.

points describing the quadrilateral, upon which the ellipse is drawn, are calculated by
respectively adding or subtracting both of the two semi-axis from the surfels center.
This is shown in Figure 4.3. Equation 4.2 can be used to determine whether a pixel
lies within the desired ellipse. This is possible since the space defined by our texture
coordinates is implicitly stretched in the direction of the major semi-axis.

In our implementation ellipses are only drawn as oriented splats, since their orienta-
tion plays a key role during clustering (see chapter 6).

4.3 Oriented Splats

Splats can be oriented along a points normal. This results in a better surface representa-
tion and allows surface geometry to be better recognized [Zwi+01; Bot+05]. The results
of orienting splats can be seen in Figure 4.4.

In order to orient a splat by its normal we need two tangent vectors that span the plane
defined by the normal. The first vector can be computed by either solving Equation 4.3
or by taking the cross product of the normal and any vector, that is not a scalar multiple
of it. The second tangent is then computed by taking the cross product of the normal
and the first tangent one (Equation 4.4). Both tangent vectors are then normalized and
scaled by the splat radius. Afterwards they are added or subtracted from the points
center to determine the four points of our quad in local space. This is similar to creating
an elliptical splat, as shown in Figure 4.3. The major and minor are hereby replaced with
the two computed tangent vectors. The transformation to screen space is then applied
separately to each of those points.

tangent1 · normal = 0 (4.3)

tangent2 = normal× tangent1 (4.4)

13

4 Rendering

Figure 4.4: Left: Screen aligned splats, Right: oriented splats, Top: closed surface,
Bottom: close up and artificially shrunk splats, Model: xyzrgb_dragon

Figure 4.5: Objects colored based on their LoD. red: high, green: low. left:
navvis_tum_audimax_half, right: xyzrgb_dragon

4.4 LoD Determination

During rendering the decision to draw a node of the objects octree hierarchy is met by
determining the number of pixels covered by a single surfel. If that number lies above a
certain threshold the octree is traversed further, otherwise it is not[Sch16]. Nodes in the
octree that are explored during this traversal are referred to as visible nodes. The entire
traversed tree structure is called visible tree and the leaves of the visible tree are named
visible leaves. The traversal of the octree structure, which is stored in a vector, is given
by Algorithm 3.

The calculation of the number of pixels covered is given by Equation 4.5 and Equa-
tion 4.6 as described in [Sch16]. The radius of a single surfel is either calculated using
Equation 5.2 for sub-sampling approaches or stored per octree node in the case of
clustering (seechapter 6). In order to calculate the distance, one can either transform

14

4.4 LoD Determination

the nodes center into world space and calculate the distance to the camera position
(Equation 4.7) or take the Z-component of the nodes center after transforming it into
(projected) view space, as is shown in Equation 4.8. The result of applying such a LoD
calculation per node can be seen in Figure 4.5, where surfels are colored based on the
level of detail they are drawn at.

Assuming a freely moving camera or scene, the visible hierarchy will have to be
recomputed for every frame. If scene and camera are both static, the level of detail
hierarchy could be computed only once and used repeatedly. Alternatively, as shown
in [Sch16] the resulting image could be continuously refined, if the scene and camera
are both static. This is subject of future improvements and not used in the current
implementation.

slope = tan(
fov
2
) (4.5)

projectedSize =
screenHeight

2
∗ radius

slope ∗ distance
(4.6)

distance = ‖cameraPos−WorldMat ·NodeCenter‖2 (4.7)

distance = Zcomponent(WorldViewProjectionMat ·NodeCenter) (4.8)

Algorithm 3 Determine Visible Nodes

1: procedure determineVisibleNodes(Index nodeIndex = 0, int depth = 0, Vector3
nodeCenter = ObjectBoundingCubeCenter)

2: currentNode← octreeVector[nodeIndex]
3: performTasksForVisibleNodes()
4: if failed(visibilityCheck(depth,nodeCenter,cameraPos)) OR currentNode.isLea f ()

then
5: performTasksForVisibleLeaves() return

6: childCount← 0
7: for i = 0 · · · 8) do
8: if currentNode.hasChildAtIndex[i] then
9: childIndex← currentNode. f irstChildIndex + childCount

10: childCenter ← calculateCenterOfChildNode(nodeCenter,depth,i)
11: determineVisibleNodes(childIndex,depth + 1,childCenter)
12: childCount← childCount + 1

4.4.1 Frustum Culling

As each octree node represents the bounding cube of the points contained within it,
one can also perform frustum culling on a per node basis. Frustum culling describes

15

4 Rendering

the process of determining whether an object lies within the region seen by camera,
the so-called view frustum. Especially when close or even inside a point cloud this
can provide a huge performance boost, as large parts of the scene will not be visible.
There exist various algorithms for frustum culling, reviewing them, however, is not in
the scope of this thesis. The reader is referred to Assarsson and Moller [AM99], which
contains a review and improvements to commonly used algorithms.

4.5 Shading

Especially when no color information is available shading is important to recognize more
than just the silhouette of an object. Our implementation uses Phong shading, based on
the Phong’s illumination model, which combines ambient, diffuse and specular lighting.
It was introduced by Phong [Pho75]. We further assume only a single directional light
source is placed in the scene. Phong shading is performed per pixel and requires the
pixels position in world space, as well as the objects surface normal in world space.
HLSL pixel shader code for a Phong shading implementation is presented in Listing 4.2.
The difference between a lit and an unlit scene can be seen in Figure 4.6.

There are more advanced lighting implementations, for example Eye-Dome Lighting
[Bou09], which was also implemented in [Sch16]. It has the huge advantage of not requir-
ing normal information to be present in the original data and works by approximating
local curvature during rendering.

Listing 4.2: HLSL implementation of Phong Shading

float4 lightning_phong(float3 worldPos, float3 normal)

{

float3 r = reflect(-g_lightDir.xyz, normal);

float3 v = normalize(g_cameraPos.xyz - worldPos);

//lighting constants

float cdiff = 0.5f;

float cspec = 0.4f;

float espec = 200; // specular exponent

float camb = 0.15f;

return (cdiff * saturate(dot(normal, g_lightDir.xyz))

+ cspec * pow(saturate(dot(r, v)), espec)

+ camb) * g_lightColor;

};

16

4.6 Blending

Figure 4.6: Model: xyzrgb_dragon; Left: no illumination; Right: Phong shading

4.6 Blending

To further improve the resulting image, and get rid of aliasing effects, one can perform
blending operations on overlapping splats. The general idea of blending splats is to
average all the color values in a small ε-depth behind the pixel closest to the camera.
Those can further be weighted by their distance to the center of their respective surfel.
Commonly a Gaussian weight is used. A blending algorithm for splats was introduced
in Botsch, Hornung, Zwicker, and L. Kobbelt [Bot+05] and is also implemented and
explained in detail in [Sch16].

17

5 Subsampling

This chapter is largely based on the level of detail method implemented in Potree [Sch16].
Subsampling describes methods, that use a subset of the original samples to approx-
imate the model. A nested octree structure (subsection 3.1.1) is used to create the
level of detail hierarchy. Algorithm 1 shows, how the octree is created. The actual
subsampling technique is defined by the function canInsert(data, index, point) in Line 8.
Our implementation uses Possion-disk subsampling, following the results from Schütz
[Sch16]:

We also decided to replace subsampling on a grid with Poisson-disk
subsampling. Poisson-disk subsamples are evenly spaced subsamples with a
minimum distance between points, and they exhibit more naturally looking
and pleasant patterns.

5.1 Possion-Disk Subsampling

Possion-Disk subsampling describes a method, in which a minimum distance between
all samples is enforced. To create a level of detail hierarchy, this minimum distance is
then halved at each level, which approximately doubles the sample density. Possion-disk
sampling could be achieved by simply taking a given sample and checking its distance
against all other selected samples. Due to its quadratic complexity however, this method
becomes intractable with larger point clouds.

Instead, as is shown in [Sch16], we can use the inscribed grid of our nested octree
structure. By choosing the minimum sample distance to be the side-length of one
grid cell, we simply have to check the cell, in which the sample would fall in, and its
26-connected neighbors. Such an implementation of the canInsert() function mentioned
by Algorithm 1 is shown in Algorithm 4. The 26-connected neighborhood in a 3D grid
is defined by Equation 5.1. We again choose a grid resolution of 1283 at each level, as it
gives good results in practice. The result of iterative Possion-Disk sampling is shown in
Figure 5.1.

26-Neighborhood(

ix

iy

iz

) = {n ∈N3|n =

ix + {−1, 0, 1}
iy + {−1, 0, 1}
iz + {−1, 0, 1}

∧n 6= i∧∑
i

ni < gridResolution3}

(5.1)

19

5 Subsampling

Algorithm 4 Insert Possion Disk

1: procedure canInsert(Grid[] grid, GridIndex index, Point v)
2: if ¬empty(grid[index]) then return false

3: for each neighborIndex in neighborhood(index) do
4: if distance(grid[neighborIndex],v) < minimumDistance then return false

return true

(a) (b)

(c)

Figure 5.1: (a,b)Possion-Disk subsamples at LoD = 0/1; (c) final point cloud at LoD = 1,
created by combining level 0 and 1

20

5.2 Splat Size Determination

5.2 Splat Size Determination

Figure 5.1 shows, how a certain level of detail is formed by drawing all nodes in the
octree hierarchy up until the lowest visible node. Since the main idea behind level
of detail is to draw more samples in regions closer to the camera the maximum level
of detail will inevitably vary across an entire object. The radius of a spat is given by
Equation 5.2. The problem is now, to determine the level of detail for a given splat.
Three methods will be explored in this section. Their effects can be seen in Figure 5.3.

splatSize(LoD) = originalSamlpeSize ∗ 2Max LoD−LoD (5.2)

(a) (b) (c)

Figure 5.2: Different splat size determination methods: (a) Splat size is determined
based on the level of the node in which the point is stored, lower level surfels
are covered by higher level ones; (b) A global splat size is imposed, holes
emerge at lower levels of detail; (c) Splat size is determined, based on the
level of detail in an area.

5.2.1 Fixed Size per Octree Level

The the simplest approach would be to determine the level of detail for Equation 5.2
dependent on a nodes depth in the octree. This has the effect, that samples contained in
lower nodes (higher level of detail) will be a lot smaller than samples in higher nodes
and might even get occluded. This is very undesirable, as it causes the effect of a lower
level of detail being used. The result of a fixed size per node approach can be seen in
Figure 5.2a.

5.2.2 Globally Fixed Size

Another simple approach would be to globally fix the size of samples. Depending on
the choice of size, however, their either holes will emerge at lower levels of detail, as
shown in Figure 5.2b, or there will be significant overdraw in regions with a high level
of detail.

21

5 Subsampling

(a) (b) (c)

Figure 5.3: Demo for different methods of splat size determination: (a) Fixed Size
per Octree Level; (b) Globally Fixed Size; (c) Adaptive Splat Size; Model:
dragon_perlin_color

5.2.3 Adaptive Splat Size

Since neither of the above approaches gives good results in practice, the adaptive size
approach developed in [Sch16] has to be used. The idea behind this adaptive approach is
to determine the level of detail for each sample based on its position. For this operation
to be computationally viable it has to be performed on the GPU.

Before rendering, the octree is traversed in a breadth-first manner and the visible
hierarchy is stored in a one-dimensional Texture using 32 bit per node entry using the
following layout:

• bit 0-7: Mostly padding. Set to 0xFF if the node is a leaf in the original octree,
0x00 otherwise. This is used for nodes, that were not expanded due to not having
enough samples overall. These nodes contain samples at the density of the original
model and should thus be drawn at the maximum LoD.

• bit 8-15: Each bit indicates, whether there exists a child node corresponding to
one of the 8 sub-cubes of the nodes bounding cube

• bit 16-31: Number of entries between the current node and its first child. Per
definition of breath-first, all children of the same node are direct successors of the
first child in the generated array.

Visible nodes are determined according to section 4.4. During this traversal all visible
nodes are marked. This texture is then uploaded to the GPU and in a second traversal
on the CPU side a draw call is issued for each marked node and the nodes are unmarked
to prepare for the next frame.

On the GPU side then, the octree structure is traversed for each sample in order
to determine its level of detail. This is done by following Algorithm 5. The traversal
process is also visualized in Figure 5.4.

22

5.2 Splat Size Determination

Algorithm 5 GPU Octree Traversal per Sample

1: procedure calcDepth(Position pos)
2: depth← 0
3: nodeIndex← 0
4: center← bounding Cube Center
5: sideLength← bounding Cube Side Length
6: node← LookUpInTexture(nodeIndex)
7: while true do
8: center, childIndex ← subCubeCoveringPosition(pos, center, depth)
9: if ¬bitSet(node.children, childIndex) then return depth

10: childOffset← 0
11: for i← 1 . . . childIndex do
12: if bitSet(node.children, i) then
13: childOffset← childOffset + 1

14: nodeIndex← nodeIndex + node. f irstChildO f f set + childOffset
15: node← LookUpInTexture(nodeIndex)
16: if First8BitsSet(node) then return maxDepth

return depth

Figure 5.4: Depth determination for a single sample (red); tree is traversed until selected
node (blue) is a leaf

23

6 Clustering

Figure 6.1: Simplified for3d_januartreffen point cloud. People are approximated by
relatively small surfels, while the floor has larger uses fewer large surfels.
Splats are outlined in black for better identification.

In statistics the term clustering describes the process of finding data points that, in
some sense, have similar features. For the applications on point clouds this means, that
we do not have to be limited to selecting points based on their distance, but we can also
consider other attributes, namely color and curvature (normal) information.

Most clustering algorithms for point clouds are only intended for simplification tasks,
which is the process of approximating a point cloud with a smaller set of points while
staying within a maximal error. By iteratively increasing this maximum error and
imposing a spacial partitioning structure, such as octrees, simplification methods can be
used to create a level of detail hierarchy [FHP13; PGK02].

25

6 Clustering

The main property of clustering based approaches is that there is no global sample
density. Instead the number of surfels depends on the local complexity in terms of
geometry as well as color. As a result we can no longer calculate the size of a surfel
on-the-fly, but we have to compute and store it during the creation of our hierarchy.
The result of having different sized surfels at the same level of detail can be seen in
Figure 6.1.

6.1 Creation

In order to provide a better comparison between our clustering and our subsampling
approach, and since a lot of code from our subsampling implementation could be reused,
the creation of a level of detail hierarchy using clustering was implemented as follows:

1. Create the octree hierarchy according to Algorithm 1, but instead of storing the
data inserted into the grid at the node, also push it down to the children. This way
at the end of this step all samples will be stored at the leaf nodes of our octree and
the inner nodes will be empty.

2. Select a node, who’s children are either leaves or have been marked.

3. Sort all the surfels stored in the nodes children into a grid. As resolution we
picked the same resolution that was used in step (1). In practice 1283 has proven
to be a reliable choice. This is used to accelerate the finding points close to a given
seed point.

4. Perform the actual clustering approach. For our implementation this is described
in the next section (subsection 6.1.1).

5. Mark the selected node and continue with step (2) until you the octree’s root node
is reached.

A lot of computation time is essentially wasted in the first step. For the overall
performance of the clustering algorithm, this can be neglected, as the time required by
the clustering itself drastically outweighs it. Still one could try sorting the entire point
cloud into a giant grid and then iteratively applying the clustering implementation. The
octree structure would then have to be created afterwards. This approach is, however,
seems not suitable for out-of-core approaches.

6.1.1 Region Growing

Our clustering implementation uses a grid-based, greedy region growing approach
similar to the one described in Wu and L. Kobbelt [WK04]. This means, that we start at
a randomly chosen point, a so called seed point. We then determine the cell in our 3D
grid, in which this seed point lies. We search that cell, and its neighborhood, for surfels

26

6.1 Creation

(a) Step 0 (b) Step 1 (c) Step 2 (d) Step 3

Figure 6.2: Grid-accelerated region growing using 16-connected neighborhood. Blue:
nodes currently Being explored, Green: node has been explored and at least
one fitting point was found. Red: previous search did not find a fitting point

(a) Step 0 (b) Step 1 (c) Step 1

Figure 6.3: Grid-accelerated region growing using 26-connected neighborhood. Blue:
nodes currently Being explored, Green: node has been explored and at least
one fitting point was found. Red: previous search did not find a fitting point

that can be added to our cluster, meaning they match a certain similarity criterion. If and
only if we find a point, that can be added to the cluster, we continue to explore all nodes
in the 18- or 26-connected neighborhood of that point, if they have not already been
explored. This is done by storing all explored nodes in a set (in C++ std::unordered_set)
and each time we want to explore a new cell we check, if this cell is not already in the
set.

A key assumption hereby is, that if there are two surfels P1, P2, where P1 can be added
to the cluster, while P2 cannot, the following has to hold:

distpos(P1, seedPoint) < distpos(P2, seedPoint)

By choosing a grid resolution of 1283 this is constraint almost always satisfied in practice.
A 2D example of such an outwards going grid-search is depicted in Figure 6.2 and

Figure 6.3. As one can gather from the figures 26-connected grid-search tends to take
fewer steps, while 18-connected grid-search generally explores fewer nodes in total. In
practice the performance difference between both methods is negligible.

While a greedy approach does per definition not provide optimal results, the findings
of [WK04] show, that it tends to come very close to an optimum. Global relaxation
solutions, as presented in [WK04; SF08], take significantly more computational resources.

6.1.2 Attributes and Distance Functions

In order to decide, if a point gets added to a cluster or not, we need some form of
distance or dissimilarity measure. As mentioned in the introduction to this chapter, in

27

6 Clustering

a clustering setting we can consider more than just the spacial distance between two
points. If we were to cluster samples only based on spacial distance, we would end up
with a globally consistent density and the results of our clustering approach would end
up very similar to those of Possion-Disk sampling [MF92; Sch16]. In fact our algorithm
would be far worse, seeing how we create new surfels for each inner node of our LoD
hierarchy instead of choosing representatives from the existing dataset.

Our algorithm considers three attributes, which will be described in the following
sections. For our implementation we assume all of these attributes are present. If a
loaded point cloud does not contain one of these attributes identical values are set for
each sample. While this is not recommended for practical use it simplifies changing and
improving our algorithm.

Position:

The key idea behind clustering is to use all points, that lie on the same plane and have
the same color, or at least within a small margin of error. By not imposing a maximal
radius for a single cluster, we have found, that simplifications of planar surfaces with a
gradient change in color, do not tend to look very appealing to the human eye. This
could be at least partially remedied by blending the resulting large splats together in
order to provide a smoother transition form one surfel to the next. Blending however
was not implemented as part of this thesis and is left open for future examinations
[Bot+05].

Instead we chose to impose a maximum cluster size, which is equal to a multiple of
the side-length of a grid cell in the inscribed search grid. Five to ten times the size of
one such cell has been found to provide decent results. This can be seen in Figure 6.4,
where the edges of the large splats, generated by not having a maximum radius, can be
seen clearly in the left picture.

The distance between two points is calculated using the standard, euclidean distance
shown in Equation 6.1.

disteuclid(p1, p2) = ‖p1 − p2‖2 =
√
(p1 − p2) · (p1 − p2) (6.1)

Normals:

Especially when it comes to large, mostly-flat surfaces, such as walls or floors, point
clouds fall short. By allowing points in a large area to be added to the same cluster, as
long as their normals don’t diverge too much, one can represent such flat surfaces easily
by only using a few representing surfels [WK04; PGK02].

The angle between two vectors u and v is defined by:

cos(θ) =
u · v

‖u‖ · ‖v‖ (6.2)

28

6.1 Creation

Figure 6.4: Left: surfels generated by not having a maximum radius. Edges and inter-
sections of large splats can be seen clearly; Right: surfels generated with
a maximum radius. Transitions between splats are no longer eye-catching;
Model: navvis_tum_audimax_half

Normals have per definition length one, which means Equation 6.2 can be simplified to:

distnormal(n1, n2) = angle(n1, n2) = |acos(n1 · n2)| (6.3)

The absolute of the angle is taken, since distance functions are per definition symmetric
and not negative.

When calculating the angle between two normal vectors it is very important to check,
that the input vectors do in fact have unit length. During testing various datasets we
discovered, that some contained a small number of samples with the vector (0, 0, 0)T as
normal entry. As we know from linear algebra, and as can also be seen in Equation 6.3,
the zero-vector is perpendicular to all vectors, including itself, meaning the distance
function would always return π

2 or 90◦. Depending on the implementation, this could
result in an endless loop, where a sample is not added to a cluster that was generated
using that same sample as seed point. We therefor decided to check the normal vector of
each sample during the creation of the octree hierarchy and simply discard all samples,
that did not have a unit length normal vector.

Colors:

Of course for clustering objects, like paintings, which generally tend to have a flat surface,
it would not be desirable to simplify a point cloud only by its geometric complexity.
This would result in an essentially useless approximation. Instead, if color information
is present, we have to consider it, when building our clusters. As distance measure for
colors we chose the Euclidean distance (Equation 6.1). The results of also using color
information can be seen in Figure 6.5.

29

6 Clustering

(a) (b) (c)

Figure 6.5: Clustering with color constraint; (a) No color constraint. The image is
basically unusable; (b) With color constraint: The writing is still recognizable,
while the areas with no text are approximated by larger surfels; (c) Close-up
image of (b). The splats are outlined in black. One can see larger splats in
areas with no writing and smaller ones where writing is present; Model:
xyzrgb_manuscript

Figure 6.6: Decision boundaries for different notions of distance. Left: Ellipsoid-shaped
cluster as a result of using a combined distance function; Right: Cylinder-
shaped cluster as a result of using separate conditions

6.1.3 Feature-space Distance Function vs. per Attribute Threshold

While one could unify all attributes into one 9-dimensional distance function, as shown
in Equation 6.4 [SLL11], we chose to separately impose a threshold for each attribute
[WK04]. In theory Equation 6.4 would allow points spatially closer to the seed point
to have a higher variation in color and normal dissimilarity, while points further away
would have to be similar in color and normals. This would lead to more ellipsoid shaped
clusters, while separate constraints will lead to cylinder shaped ones (shapes shown
in Figure 6.6). When ultimately determining a representative surfel for the computed
cluster both approaches deliver similar results. The differences between both approaches
are listed in Table 6.1.

dist(

pos1

nor1

col1

 ,

pos2

nor2

col2

) = λpos‖pos1 − pos2‖+ λnor|acos(n1 · n2)|+ λcol‖col1 − col2‖

(6.4)

30

6.2 Computing Representatives

per Attribute Threshold

• Cylinder-shaped clusters

+ Attributes of a maximum-size
cluster are easily defined.

+ Can be used even if normal/color
information is not present.

- Thresholds only determine,
whether a point should be added
to the cluster.

Unified Distance Function

• Ellipsoid-shaped clusters

- One has to determine a maxi-
mum size in 9 dimensional feature
space.

- If attributes are missing distance
function or maximum distance
has to be adapted.

+ Gives an actual notion of distance
between two points (useful when
attempting global relaxation)

Table 6.1: Differences between separately thresholding attributes and choosing a unified
distance function.

6.2 Computing Representatives

While adding samples to a cluster, two normalized vectors and two lengths correspond-
ing to those vectors are used to track the size of resulting bounding volume. This is
similar to the Extremal Points Optimal Sphere (EPOS) algorithm introduced by Larsson
[Lar08]. These two vectors will be referred to as major and minor, the major being the
longer of the both. Both vectors are initialized as the zero vector (0, 0, 0)T, the lengths are
initialized with ∞. For each sample found during our grid-accelerated region growing,
Algorithm 6 is executed. It adds the input sample, if the distance conditions are met. If
the conditions are not met the major and minor vectors are updated, aiming to maximize
the angle between them. After recomputing the cluster center (see subsection 6.2.1) the
size of the final representative surfel is computed:

• For circular surfels the radius is simply set to the length of the major.

• For elliptical surfels the major semi-axis is taken as the major vector scaled by its
length. The minor semi-axis is recomputed as the cross product of the major and
the centers normal and then scaled by the maximum projected distance [WK04]
in the direction of the computed vector. This can be seen in Equation 6.5 and
Equation 6.6. This ensures that orthogonality between major and minor semi-axis,
as well as the correct orientation of the ellipse.

minorSemiAxis = (major× center.normal) (6.5)

minorLength = maxv∈Cluster|minorSemiAxis · (v− center.position)| (6.6)

31

6 Clustering

Algorithm 6 Try Insert Point To Cluster

1: procedure tryInsert(Point v)
2: majorDist← major · v.pos
3: minorDist← minor · v.pos
4: if majorDist > majorLengthORminorDist > minorLength then return false

5: if SUCCESS(checkDistanceConstraints(v,seedPoint)) then
6: addPointToCluster(v) return true
7: else
8: angPointMajor← distnormal(major, normalize(v.normal))
9: angPointMinor← distnormal(minor, normalize(v.normal))

10:

11: if angPointMajor > distnormal(major, minor) then
12: majorLength← disteuclidean(v.pos, seedPoint.pos)
13: major← normalize(v.pos− seedPoint.pos)
14: else
15: if angPointMinor > distnormal(major, minor) then
16: minorLength← disteuclidean(v.pos, seedPoint.pos)
17: minor← normalize(v.pos− seedPoint.pos)

return false

6.2.1 Cluster Centers

The presented algorithm can potentially "grow" clusters differently far in different
directions. As one can see in Figure 6.7b, by choosing the seed point as center, the
resulting surfel will be a lot larger than what will be visible during rendering. This not
only wastes pixel shader executions, but, in extreme cases, could also cause parts of a
splat to be drawn in areas, where it is not supposed to be. To prevent this we have to
choose a different center for the final surfel. Two methods of choosing that new center
present themself: the arithmetic mean and the center of the Axis-Aligned Bounding
Box (AABB). Both can be computed very simply by Equation 6.7 and Equation 6.8. The
results from [Lar08] show, that the AABB-center tend to work better when approximating
the center of the minimum bounding sphere. To calculate the representative surfels
normal and color we decided to use the arithmetic mean. The results, however, are
indistinguishable from those obtained using the AABB-center.

Before centering the position of we also have to save our major and minor vector
by computing the points they reference, which can be done using Equation 6.9. After
recomputing the center, major and minor can be recovered using Equation 6.10.

Centermean(Cluster) =
1

size(Cluster) ∑
v∈Cluster

v (6.7)

32

6.3 Rendering

(a) Selected samples (b) Seed point center (c) Re-calculated center

Figure 6.7: Choosing the seed point as center vs. re-calculating the clusters center; Blue:
Surface samples, Red: seed point and cluster, Purple: major and minor,
Green: resulting surfel

centerAABB(Cluster) =
componentWiseMin(Cluster) + componentWiseMax(Cluster)

2
(6.8)

majorWorld = center + majorLength ∗major

minorWorld = center + minorLength ∗minor
(6.9)

majorLength = ‖majorWorld− center‖

major =
majorWorld− center

majorLength
minorLength = ‖minorWorld− center‖

minor =
minorWorld− center

minorLength

(6.10)

6.3 Rendering

Rendering is pretty straight forward compared to subsampling approaches. The octree
is traversed according to section 4.4. Draw calls are only issued for the visible leafs
determined by that traversal. The splat size is also stored per surfel and does not need
to be computed. As the radius of a surfel in the original point cloud is not available in
most datasets it can be choosen by the user. The user input radius is then added to the
value stored in the surfel each frame during shader execution.

In a point cloud each sample can be seen as a small sphere and thus drawn as screen-
aligned splats as shown in Listing 4.1. Since the computed clusters are ellipsoid- or
cylinder-shaped the surfels representing these clusters must be considered as oriented
circles or ellipses in 3-dimensional space. This means they should be drawn using
oriented splats.

33

6 Clustering

Figure 6.8: Level of Detail using average surfel size per node. red: high LoD, green: low
LoD; left: for3d_januartreffen, right: xyzrgb_manuscript

6.3.1 Level of Detail

The level of detail is calculated according to section 4.4. Since the size of our surfels
is no longer constant per level or even per node in our octree. In order to determine
the level of detail efficiently, however, the size of a surfel for a given octree node needs
to be known. Our implementation simply stores the average radius for circular surfels
and the average length of the major semi-axis for elliptical ones. The result of doing so
can be seen in Figure 6.8. As one can see, the general notion of lower level of detail for
regions further away from the camera is preserved, however the decision boundary is
not as clear, as it is for subsampling methods.

34

7 Implementation

This chapter will briefly mention the technologies used to implement the algorithms
presented in this thesis. Our program was implemented in C++ using the Microsoft Visual
Studio 2017 IDE, as it offers a great amount of debugging tools, including a graphics
debugger. For rendering the DirectX 11 graphics API was used. Our implementation
supports point clouds provided in the PLY file format. Some external libraries were
used to accelerate development. The program is meant to be run on a Microsoft Windows
operating system.

7.1 DirectX 11

DirectX 11 is a graphics API developed by Microsoft. It allows the user to access graphics
hardware. The Direct X 11 rendering pipeline consists of 10 stages. Five of those are
programmable stages, so called shader-stages. Our program implements only three of
those:

• Vertex Shader: The Vertex Shader is meant to perform operations per point. It
takes exactly one point as input and returns also exactly one. This stage must be
specified whenever a draw call is issued. Our implementation uses this stage only
to pass on the input to the next stage.

• Geometry Shader: The Geometry Shader takes as input a single point and outputs
four points, defining the surface our splats will be drawn on. This is the workhorse
of out rendering algorithms. It performs the following actions:

1. (optional) Transform the input position and normal to world space, if il-
lumination is required. The objects world matrix is stored in a constant
buffer.

2. Determine the size of a splat (for subsampling).

3. Transform the input position to screen space.

4. Compute and return the four points, that define the surface our splat will be
drawn on. Additionally texture coordinates are set to (±1,±1) or (±1,∓1),
so that the center of the surface will have coordinate (0, 0). Which point is
assigned which texture coordinate is shown in Figure 4.1.

Afterwards the Rasterizer Stage is executed and the computed surface is dis-
cretized into pixels.

35

7 Implementation

• Pixel Shader: After the rasterisazion this stage is executed for each pixel. If
circular splatting is used, all pixels not fulfilling the radius condition Equation 4.2
are discarded. This causes the depth check to be performed after the pixel shader
is executed. For the remaining pixels shading is calculated. The Pixel Shader then
returns the final color of that pixel.

7.2 Memory Management

Modern point-clouds can contain several billion samples. These, of course, can not all
be stored in video memory, in fact even system memory might not suffice to hold all
of them. For this reason a memory management strategy needs to be developed. This
was however not in the scope of this thesis. The reader is referred to [Sch16], which
implements an out-of-core algorithm for large point clouds.

7.3 PLY Format

Our implementation supports loading point clouds stored in the PLY file format, also
known as Stanford Triangle Format. A PLY-file consists of two parts:

• The header defines the layout of a single sample, as well as, the total number of
samples. PLY can also be used to store polygonal models. For such files indices
and faces are also defined in the header.

• In the body the actual samples are stored according to the layout defined in the
header. The information can either be stored in ASCII or binary.

For more information on the PLY-format the reader is directed to [Bou18].

7.4 MeshLab

MeshLab is an open-source tool for editing various kinds of 3D models, including
conventional triangle meshes and point clouds. It also provides varous algorithms for
computing per-sample normals. Those were used to compute normals for point clouds
in which normal information was not present. MeshLab can be found on [Mes18].

7.5 External Libraries

Three external libraries were used to implement this project. They are briefly described
in the next sections.

36

7.5 External Libraries

7.5.1 Eigen 3

The Eigen 3 library provides linear algebra operations. It can be used with vectors of
variable length. It is used in our clustering implementation. Eigen 3 is licensed under the
MLP2 software license. Additional information can be found on [Eig18]. While DirectX
provides its own implementation for vector operations in the form of DirectXMath, those
implementation only support up to 4-dimensional vectors. Our points are stored in a
9D vector.

7.5.2 AntTweakBar

For user input via our graphical interface the AntTweakBar library was used. It provides
a large selection of user input techniques, such as check-boxes, drop-down menus,
quaternion-inputs, etc... AntTweakBar is provided under the zlib/libpng license. It can be
found under [Ant18]

7.5.3 tinyply

The tinyply library library is a light-weight library used to load and store PLY-files. It
can be found on GitHub, see [PLY18].

37

8 Results and Comparison

This chapter provides a comparison between the Potree [Sch16] based subsampling
approach and our clustering implementation, based on [WK04; Lar08; FHP13]. We
will look at the performance of both algorithms during the generation of the level of
detail hierarchy. Also the rendering performance will be reviewed. Finally the quality
of both approaches will be showcased. Testing was done on a desktop computer with
an Intel(R) Core(TM) i7-4770K CPU @ 3.50GHz (8 CPUs), ~3.5GHz processor, ~16 GB
system memory and a NVIDIA GeForce GTX 780 graphics card with ~3 GB of video
memory. A constant screen-resolution of 1920 × 1080 was chosen. The level of detail
generation was performed on a single CPU core, even though a make-shift multi-
threading implementation is available for the clustering algorithm. The general benefits
and caveats of both approaches are listed in Table 8.1.

Subsampling

• Does not consider normal and
color information.

+ Generation of LoD hierarchy is
fast.

+ No additional points need to be
computed and stored; only origi-
nal samples are used.

+ Only needs grid resolution to be
specified. 1283 works for most.

- Visible tree needs to be traversed
twice on CPU.

- Entire visible tree needs to be
drawn.

- Tree traversal and texture lookup
per sample on GPU.

Clustering

• Uses normal and color informa-
tion to increase sample density in
complex areas.

- Generating the Levels of Detail
takes considerably longer.

- At each LoD new representative
surfels are generated.

- Need to determine thresholds for
normals and color dissimilarity.

- Too large thresholds will lead to
oversimplification at lower LoD.

+ Only visible leaves need to be
drawn.

+ Fewer surfels used per frame.

Table 8.1: Differences between subsampling and clustering approaches.

39

8 Results and Comparison

Model Samples Original Samples Cluster Time Subsampling Time Cluster
bunny 35,947 38,559 0.015s 0.11s
dragon_perlin_color 437,645 730,764 0.22 3.02s
xyzrgb_manuscript 2,155,617 3,177,537 1.34s 16.56s
xyzrgb_dragon 3,609,600 5,506,217 2.72s 45.81s
for3d_januartreffen 18,616,336 19,565,000 16.38s 58.13s
navvis_tum_audimax_half 26,668,620 30,390,700 23.16s 125.16s
navvis_tum_audimax 58,859,843 67,271,989 67.58s 276.12s

Table 8.2: Statistics for creating the Level of Detail hierarchy using our subsampling and
clustering implementations

8.1 Performance

This section shows the performance during generation of the level of detail hierarchy for
point clouds of varying sizes. The results are ordered by the number of samples in the
original point cloud. Table 8.2 and Figure 8.1 show the time required to create a LoD
hierarchy, as well as the total number of points in the entire structure. Note, that in the
subsampling approach, the number of surfels is equal to the number of samples in the
original point cloud. The clustering implementation performs better, when flat surfaces
are present in the point cloud. To see this compare the results of creating the LoD for
the xyzrgb_dragon and for3d_januartreffen datasets. It is however also clear to see, that
the subsampling approach takes significantly less time to create a hierarchy.

8.2 Circular vs. Elliptical Surfels

This section compares circular and elliptical surfels, which can both be generated by our
clustering implementation. The general differences using between circular and elliptical
surfels are listed in Table 8.3. An example is given by the pillar in Figure 8.2: circular
splats generate a lot of overdraw, while elliptical ones fit the surface better.

8.3 Showcase

In this section the visual results of subsampling and clustering will be presented and
compared. Each figure also mentions the approximate frames per second the image
was rendered at. This serves as comparison for rendering performance. The images
were drawn using oriented circular splats for subsampling and oriented ellipses for
clustering.

40

8.3 Showcase

Figure 8.1: Create times for subsampling (red) and clustering(blue) plus regression lines.
x-axis: number of 1000 samples, y-axis: time in seconds.

Circular Surfel

+ Can be defined by a single radius
(1 value), which could even be
stored in the length of the surfels
normal vector.

- Long, thin shapes require either a
lot more surfels or cause substan-
tial overdraw.

Elliptical Surfel

- Requires at least one more vec-
tor (3 values), when storing only
major and minor semi-axis and
computing the normal vector as
a cross product as those 2 vectors
during rendering.

- More operations required per sur-
fel during rendering.

+ Tend to represent the cluster bet-
ter.

Table 8.3: Differences between subsampling and clustering approaches.

41

8 Results and Comparison

Figure 8.2: Difference between circular (Left) and elliptical (right) surfels; Model:
navvis_tum_audimax_half

(a) Subsampling Level 0:
1100 fps

(b) Clustering Level 0: 1000
fps

(c) Original. Subsampling:
600 fps, Clustering: 670
fps

Figure 8.3: Different Levels of Detail; Model: Stanford Bunny

(a) Subsampling Level 0: 750 fps (b) Subsampling Level 1: 500 fps

(c) Clustering Level 0: 800 fps (d) Clustering Level 1: 600 fps

Figure 8.4: Different Levels of Detail; Model: Dragon Perlin Color

42

8.3 Showcase

(a) Subsampling Level 1: 760 fps

(b) Clustering Level 1: 690 fps

Figure 8.5: Clustering and Subsampling applied to point cloud with complex and simple
regions; Model: xyzrgb manuscript

43

8 Results and Comparison

(a) 11 fps (b) 13 fps

(c) 13 fps (d) 21 fps

(e) 31 fps (f) 54 fps

Figure 8.6: Scene rendered according to section 4.4 with pixel thresholds: 10/20/80px.
Left: Subsampling, Right: Clustering; Model: for3d januartreffen

44

8.3 Showcase

(a) 11 fps (b) 13 fps

(c) 13 fps (d) 21 fps

(e) 31 fps (f) 54 fps

Figure 8.7: Scene rendered according to section 4.4 with pixel thresholds: 10/20/80px.
Left: Subsampling, Right: Clustering; Model: audimax (half)

45

9 Conclusion and Future Work

We re-implemented the subsampling based Level of Detail algorithm presented in
[Sch16], which only relied on reducing the point density at each level. We then used
clustering based simplification algorithms, based on the works of [FHP13; WK04; Lar08],
to generate a level of detail hierarchy, that also considers geometric and color complexity.

In terms of the time it takes to generate a level of detail hierarchy, our clustering
approach falls short compared to subsampling techniques. An inherent characteristic
of the clustering approach is, that we need to generate new surfels at each level of our
hierarchy, while subsampling approaches only store the original point cloud (plus the
generated control structure). In addition with the fact, that a clustering implementation
requires us to store size information per surfel, this leads to larger overall memory
usage, which is of course a huge downside. In addition normal information is often not
present in point clouds and needs to be precomputed, for the clustering approach to be
viable. A subsampling approach might get away with only using position (and color, if
available) information, perform splatting in screen space and implement shading via
Eye Dome Lighting [Bou09]. On the contrast, surfels in a clustering approach need
normal information, since the clusters they represent are oriented disks in 3D space,
and they need to be drawn using oriented splats.

When looking at rendering performance and quality, however, we determined, that our
clustering algorithm substantially outperforms the subsampling approach. By utilizing
normal and color information to compute splats, we were able to reduce the points
the generated levels of detail. Since the size of each surfel is stored per element, we
do not need to perform elaborate computations and texture lookups during rendering.
Clustering is also less dependent on CPU time, as the LoD hierarchy only needs to be
traversed once.

Especially human-made objects, like walls, floors, ceilings, tables, etc., tend to include
lots of planar surfaces. By utilizing normal information a clustering implementation can
simplify such regions using a comparably low number of surfels.

Future work includes:

• Our clustering implementation still allows for holes to exist. A hole filling step, as
shown in [WK04] could be added to the processing pipeline.

• Implementing a blending approach, as mentioned in section 4.6. Right now we do
not use blending for splats. A blending approach will most definitely improve the
image quality. It might even allow for a larger maximum cluster size, which would

47

9 Conclusion and Future Work

allow us to use fewer, but larger, surfels to represent a scene, without sacrificing
image quality.

• Multi-threading or GPGPU support for the presented algorithms. Right now we
only provide a make-shift multi-threading per node for the clustering approach.
The time it takes to generate a LoD hierarchy for large point clouds, however,
demands a faster implementation.

• At this time the processing pipeline includes using MeshLab to generate normals,
if they are not present in a given dataset. For practical use, this feature would be a
must have.

• Our implementation does not support explicit memory management. All nodes
are stored in video memory and the DirectX 11 driver takes care of residency
management. For our implementation to be able to handle larger point clouds, for
which even system memory might not suffice, an out-of-core implementation is
needed.

• Persistent storing of the LoD hierarchy. Right now, our hierarchy is created when
a point cloud file is opened. Since clustering takes a substantial amount of time it
might be helpful, to create the entire hierarchy offline and load it, when a model
is opened.

• Currently only the PLY format is supported. In the future support for additional
formats, such as CSV, VTK, PCD, should also be provided, to allow for more
general use.

• If no color information is present our implementation stores the same color value
for each sample. This results in larger memory usage and wasted computations
during clustering. If the program is intended to frequently handle color-less point
clouds, a separate function, that ignores color and sets a constant valu during
rendering should be implemented.

48

List of Figures

3.1 Left: Bounding cube divided into octree. Right: Tree representation.
Source: [Wik18] . 5

4.1 Image depicting, how a splat can be generated, given a position and a
radius . 11

4.2 Left: Quad Splats, Right: Circle Splats, Model: Dragon_perlin_color . . . 12
4.3 Elliptical splat (blue) drawn on a rectangle(black) determined by a surfels

major and minor semi-axis (red). The texture coordinates in the corners
are used to determine if a pixel lies within the ellipse. 13

4.4 Left: Screen aligned splats, Right: oriented splats, Top: closed surface,
Bottom: close up and artificially shrunk splats, Model: xyzrgb_dragon . 14

4.5 Objects colored based on their LoD. red: high, green: low. left: navvis_tum_audimax_half,
right: xyzrgb_dragon . 14

4.6 Model: xyzrgb_dragon; Left: no illumination; Right: Phong shading . . . 17

5.1 (a,b)Possion-Disk subsamples at LoD = 0/1; (c) final point cloud at LoD =
1, created by combining level 0 and 1 . 20

5.2 Different splat size determination methods: (a) Splat size is determined
based on the level of the node in which the point is stored, lower level
surfels are covered by higher level ones; (b) A global splat size is imposed,
holes emerge at lower levels of detail; (c) Splat size is determined, based
on the level of detail in an area. 21

5.3 Demo for different methods of splat size determination: (a) Fixed Size
per Octree Level; (b) Globally Fixed Size; (c) Adaptive Splat Size; Model:
dragon_perlin_color . 22

5.4 Depth determination for a single sample (red); tree is traversed until
selected node (blue) is a leaf . 23

6.1 Simplified for3d_januartreffen point cloud. People are approximated by
relatively small surfels, while the floor has larger uses fewer large surfels.
Splats are outlined in black for better identification. 25

6.2 Grid-accelerated region growing using 16-connected neighborhood. Blue:
nodes currently Being explored, Green: node has been explored and at
least one fitting point was found. Red: previous search did not find a
fitting point . 27

49

List of Figures

6.3 Grid-accelerated region growing using 26-connected neighborhood. Blue:
nodes currently Being explored, Green: node has been explored and at
least one fitting point was found. Red: previous search did not find a
fitting point . 27

6.4 Left: surfels generated by not having a maximum radius. Edges and
intersections of large splats can be seen clearly; Right: surfels generated
with a maximum radius. Transitions between splats are no longer eye-
catching; Model: navvis_tum_audimax_half 29

6.5 Clustering with color constraint; (a) No color constraint. The image is
basically unusable; (b) With color constraint: The writing is still recog-
nizable, while the areas with no text are approximated by larger surfels;
(c) Close-up image of (b). The splats are outlined in black. One can see
larger splats in areas with no writing and smaller ones where writing is
present; Model: xyzrgb_manuscript . 30

6.6 Decision boundaries for different notions of distance. Left: Ellipsoid-
shaped cluster as a result of using a combined distance function; Right:
Cylinder-shaped cluster as a result of using separate conditions 30

6.7 Choosing the seed point as center vs. re-calculating the clusters center;
Blue: Surface samples, Red: seed point and cluster, Purple: major and
minor, Green: resulting surfel . 33

6.8 Level of Detail using average surfel size per node. red: high LoD, green:
low LoD; left: for3d_januartreffen, right: xyzrgb_manuscript 34

8.1 Create times for subsampling (red) and clustering(blue) plus regression
lines. x-axis: number of 1000 samples, y-axis: time in seconds. 41

8.2 Difference between circular (Left) and elliptical (right) surfels; Model:
navvis_tum_audimax_half . 42

8.3 Different Levels of Detail; Model: Stanford Bunny 42
8.4 Different Levels of Detail; Model: Dragon Perlin Color 42
8.5 Clustering and Subsampling applied to point cloud with complex and

simple regions; Model: xyzrgb manuscript 43
8.6 Scene rendered according to section 4.4 with pixel thresholds: 10/20/80px.

Left: Subsampling, Right: Clustering; Model: for3d januartreffen 44
8.7 Scene rendered according to section 4.4 with pixel thresholds: 10/20/80px.

Left: Subsampling, Right: Clustering; Model: audimax (half) 45

50

List of Tables

6.1 Differences between separately thresholding attributes and choosing a
unified distance function. 31

8.1 Differences between subsampling and clustering approaches. 39
8.2 Statistics for creating the Level of Detail hierarchy using our subsampling

and clustering implementations . 40
8.3 Differences between subsampling and clustering approaches. 41

51

List of Algorithms

1 Nested Octree Create . 6
2 Nested Octree to Vector . 7

3 Determine Visible Nodes . 15

4 Insert Possion Disk . 20
5 GPU Octree Traversal per Sample . 23

6 Try Insert Point To Cluster . 32

53

Bibliography

[Ale+02] M. Alexa, T. Darmstadt, M. Gross, M. Pauly, E. Zrich, H. Pfister, M. Cam-
bridge, M. Stamminger, B.-u. Weimar, and M. Zwicker. “Point-Based Com-
puter Graphics.” In: 28 (July 2002).

[AM99] U. Assarsson and T. Moller. “Optimized View Frustum Culling Algorithms
for AABBs and OBBs.” In: (Nov. 1999).

[Ant18] AntTweakBar. AntTweakBar GUI. [Online; accessed 30-July-2018]. 2018.

[Bot+05] M. Botsch, A. Hornung, M. Zwicker, and L. Kobbelt. “High-quality surface
splatting on today’s GPUs.” In: Proceedings Eurographics/IEEE VGTC Sympo-
sium Point-Based Graphics, 2005. June 2005, pp. 17–141. doi: 10.1109/PBG.
2005.194059.

[Bou09] C. Boucheny. “Visualisation scientifique de grands volumes de données :
Pour une approche perceptive.” In: (Feb. 2009).

[Bou18] P. Bourke. PLY - Polygon File Format. [Online; accessed 30-July-2018]. 2018.

[Coo86] R. L. Cook. “Stochastic Sampling in Computer Graphics.” In: ACM Trans.
Graph. 5.1 (Jan. 1986), pp. 51–72. issn: 0730-0301. doi: 10.1145/7529.8927.

[Eig18] Eigen. Eigen 3 - LinAlg Library. [Online; accessed 30-July-2018]. 2018.

[FHP13] Y. Fan, Y. Huang, and J. Peng. “Point cloud compression based on hier-
archical point clustering.” In: 2013 Asia-Pacific Signal and Information Pro-
cessing Association Annual Summit and Conference. Oct. 2013, pp. 1–7. doi:
10.1109/APSIPA.2013.6694334.

[Lab18] S. C. G. Laboratory. The Stanford 3D Scanning Repository. [Online; accessed
30-July-2018]. 2018.

[Lar08] T. Larsson. “Fast and Tight Fitting Bounding Spheres.” In: SIGRAD 2008. The
Annual SIGRAD Conference Special Theme: Interaction; November 27-28; 2008
Stockholm; Sweden. 34. Linköping University Electronic Press; Linköpings
universitet, 2008, pp. 27–30.

[LW85] M. Levoy and T. Whitted. “The Use of Points as a Display Primitive.” In:
1985.

[MD03] C. Moenning and N. Dodgson. “A New Point Cloud Simplification Algo-
rithm.” In: (Nov. 2003).

[Mea80] D. Meagher. Octree Encoding: A New Technique for the Representation, Manipula-
tion and Display of Arbitrary 3-D Objects by Computer. Oct. 1980.

55

https://doi.org/10.1109/PBG.2005.194059
https://doi.org/10.1109/PBG.2005.194059
https://doi.org/10.1145/7529.8927
https://doi.org/10.1109/APSIPA.2013.6694334

Bibliography

[Mes18] MeshLab. MeshLab. [Online; accessed 30-July-2018]. 2018.

[MF92] M. McCool and E. Fiume. “Hierarchical Poisson Disk Sampling Distribu-
tions.” In: Proceedings of the Conference on Graphics Interface ’92. Vancouver,
British Columbia, Canada: Morgan Kaufmann Publishers Inc., 1992, pp. 94–
105. isbn: 0-9695338-1-0.

[Pfi+00] H. Pfister, M. Zwicker, J. Baar, and M. Gross. “Surfels: Surface Elements as
Rendering Primitives.” In: (May 2000).

[PGK02] M. Pauly, M. Gross, and L. P. Kobbelt. “Efficient Simplification of Point-
sampled Surfaces.” In: Proceedings of the Conference on Visualization ’02. VIS
’02. Boston, Massachusetts: IEEE Computer Society, 2002, pp. 163–170. isbn:
0-7803-7498-3.

[Pho75] B. T. Phong. “Illumination for Computer Generated Pictures.” In: Commun.
ACM 18.6 (June 1975), pp. 311–317. issn: 0001-0782. doi: 10.1145/360825.
360839.

[PLY18] T. PLY. Tiny PLY - PLY file loader. [Online; accessed 30-July-2018]. 2018.

[Rei+] F. Reichl, M. G. Chajdas, K. Bürger, and R. Westermann. “Hybrid Sample-
based Surface Rendering.” In: pp. 47–54. doi: 10.2312/PE/VMV/VMV12/047-
054.

[RL01] S. Rusinkiewicz and M. Levoy. “QSplat: A Multiresolution Point Rendering
System for Large Meshes.” In: 2000 (Oct. 2001).

[Sch14] C. Scheiblauer. “Interactions with Gigantic Point Clouds.” PhD thesis. Fa-
voritenstrasse 9-11/186, A-1040 Vienna, Austria: Institute of Computer Graph-
ics and Algorithms, Vienna University of Technology, 2014.

[Sch16] M. Schütz. “Potree: Rendering Large Point Clouds in Web Browsers.” In:
(Sept. 2016).

[SF08] H. Song and H.-Y. Feng. “A global clustering approach to point cloud
simplification with a specified data reduction ratio.” In: Computer-Aided
Design 40.3 (2008), pp. 281–292. issn: 0010-4485. doi: https://doi.org/10.
1016/j.cad.2007.10.013.

[SLL11] B.-Q. Shi, J. Liang, and Q. Liu. “Adaptive simplification of point cloud using
k-means clustering.” In: Computer-Aided Design 43.8 (2011), pp. 910–922. issn:
0010-4485. doi: https://doi.org/10.1016/j.cad.2011.04.001.

[Wik18] Wikipedia. Octree. [Online; accessed 24-July-2018]. 2018.

[WK04] J. Wu and L. Kobbelt. “Optimized Sub-Sampling of Point Sets for Surface
Splatting.” In: 23 (Sept. 2004), pp. 643–652.

[WS06] M. Wimmer and C. Scheiblauer. “Instant Points.” In: Proceedings Sympo-
sium on Point-Based Graphics 2006. Eurographics. Boston, USA: Eurographics
Association, July 2006, pp. 129–136. isbn: 3-90567-332-0.

56

https://doi.org/10.1145/360825.360839
https://doi.org/10.1145/360825.360839
https://doi.org/10.2312/PE/VMV/VMV12/047-054
https://doi.org/10.2312/PE/VMV/VMV12/047-054
https://doi.org/https://doi.org/10.1016/j.cad.2007.10.013
https://doi.org/https://doi.org/10.1016/j.cad.2007.10.013
https://doi.org/https://doi.org/10.1016/j.cad.2011.04.001

Bibliography

[Zwi+01] M. Zwicker, H. Pfister, J. van Baar, and M. Gross. “Surface Splatting.” In:
Proceedings of the 28th Annual Conference on Computer Graphics and Interactive
Techniques. SIGGRAPH ’01. New York, NY, USA: ACM, 2001, pp. 371–378.
isbn: 1-58113-374-X. doi: 10.1145/383259.383300.

57

https://doi.org/10.1145/383259.383300

	Acknowledgments
	Abstract
	Contents
	Introduction
	Problem Definition
	Structure

	Related Work
	Octrees
	Subsampling
	Clustering

	Data Structures
	Octrees
	Nested Octrees

	Rendering
	Point Attributes
	Additional Shader Data
	Normal Generation

	Splatting
	Circular Splats
	Elliptical Splats

	Oriented Splats
	LoD Determination
	Frustum Culling

	Shading
	Blending

	Subsampling
	Possion-Disk Subsampling
	Splat Size Determination
	Fixed Size per Octree Level
	Globally Fixed Size
	Adaptive Splat Size

	Clustering
	Creation
	Region Growing
	Attributes and Distance Functions
	Feature-space Distance Function vs. per Attribute Threshold

	Computing Representatives
	Cluster Centers

	Rendering
	Level of Detail

	Implementation
	DirectX 11
	Memory Management
	PLY Format
	MeshLab
	External Libraries
	Eigen 3
	AntTweakBar
	tinyply

	Results and Comparison
	Performance
	Circular vs. Elliptical Surfels
	Showcase

	Conclusion and Future Work
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

