
Neural Rendering for Transparent Objects

Patrick Radner
Technical University of Munich

Justus Thies
Technical University of Munich

Matthias Nießner
Technical University of Munich

Abstract

Neural rendering combines classical rendering tech-
niques with learnable elements. It has shown great poten-
tial in areas, where the geometry of an object cannot be
obtained at a fine enough resolution for the object to be
re-rendered using the classical pipeline. Neural rendering
has also great success generating images from novel view
points.

In this work we apply the deferred neural rendering tech-
nique to transparent objects and complex scenes. We use a
classical algorithm known as depth peeling. This algorithm
renders the scene multiple times and during each iteration
stores and removes the nearest surface from the scene, by
using a depth mask. For each depth peeling pass, we com-
pute per-pixel UV-coordinates and use them to look up a
neural texture, as is done in [18]. We then stack all these
layers and pass them through a neural network to obtain
a final image. This allows us to see through transparent
objects, where the term ”transparent” also includes ob-
jects with holes, that are covered by a simplified geometry.
It also complicates the original deferred neural rendering
problem, as our network not only has to learn a rendering
function, but also how to perform a blending operation on
multiple objects.

1. Introduction

Although 3D-reconstructions have become quite accu-
rate in recent times, they are still not good enough to gener-
ate photo-realistic re-renderings or novel views using only
the classical rendering pipeline. Additionally many recon-
struction techniques assume objects to be opaque and dif-
fuse. Transparent objects tend to violate both those assump-
tions, which causes the quality of their reconstruction to
suffer severely, if not break completely. Except for very
constrained lab-setups there has not been much success in
capturing a transparent objects geometry and texture. Fur-
thermore, very fine topological details are usually recon-

structed very poorly, as either holes end up being filled, or
the objects end up being ”torn apart”. We show, that such
objects can be rendered by using a conservative proxy and
rendering it, as if it were a transparent object.

Neural networks, in particular generative adversarial net-
works (GANs), have been shown to be quite exceptional at
novel view synthesis. [18] introduced an approach called
Deferred Neural Rendering. In their approach latent fea-
ture vectors are sampled from neural texture maps, similar
to how textures would be sampled in the classical rendering
pipeline. A rendering network is then used to transform the
sampled textures into the final image. Using this approach,
photo-realistic images can be generated, even if the objects
geometry is not all too accurate.

In this work we try to extend the idea of Deferred Neural
Rendering to consider transparent objects, as-well as coarse
geometries, that filled up holes form the original mesh or
occlude objects that would be visible using a more accurate
geometry. To this end, we do not only consider the first hit
surface during rendering, but all the fragments that would
be generated along view ray. These are computed using a
classical rendering approach known as depth peeling. We
then sample the fragments textures analogue to the origi-
nal approach. For the rendering network we propose using
a per-pixel multi-layer perceptron, instead of a U-net used
in [18], as we have found it to produce sharper results and
and rely more on the neural textures, which is important for
scene editing and novel view synthesis from extreme view
points.

2. Related Work
2.1. Image Synthesis

The recent advances deep learning allow us to use neural
networks to generate high-quality, photo realistic images. In
particular generative adversarial networks (GANs) [2] have
been shown to provide exceptional results and can be found
in most state of the art solutions [8, 6, 16, 18]. An impor-
tant modification to classical GANs are conditional GANs
(cGAN) introduced by [12]. In cGANs the authors propose

1

using conditioning parameters, which are fed into both the
generator and the discriminator and allow to control the out-
put of the generator. Using cGANs a common generator
architecture is the U-net [14]: an encoder-decoder architec-
ture with skip connections between same resolution encoder
and decoder blocks.

2.2. Novel View Generation using Neural Networks

Neural rendering describes approaches using neural net-
works to predict, what a camera would see from an arbitrary
viewpoint [19].

This paper extends the Deferred Neural Rendering ap-
proach introduced by [18], where the authors proposed aug-
menting the existing rendering pipeline with learnable ele-
ments; namely neural textures and a neural rendering net-
work. [18] can generate high quality novel views, even if
an object is approximated by a very coarse geometry. The
authors also show, that their approach can be used for photo-
realistic scene editing.

Other neural rendering approaches include for example
[16], where they store their implicit scene representation in
a 3D voxel-grid or the follow-up work [17], in which the
voxel-grid is replaced by a continuous function represented
by a neural network. Generative Query Networks (GQN)
allow the generation of new objects by combining features
from known objects [10]. [19] extends GQN by using at-
tention along the epipolar line to model non-local depen-
dencies.

2.3. Reconstruction of Transparent Objects

Reconstructing the geometry of transparent objects is a
challenging tasks, as they violate most assumptions of stan-
dard algorithms. Modern 3D-reconstruction approaches of-
ten use RGB-D images to directly capture the geometry
of an object, however, due to refraction, active depth sen-
sors will fail to capture transparent objects. [1] proposes
using the defects caused by capturing transparent objects
with RGB-D cameras to detect and reconstruct them. A
high quality reconstruction can only be achieved using very
constrained setups [20]. Very recently ClearGrasp was in-
troduced [15]. The paper uses deep learning to detect and
transparent objects and fairly accurately predict their geom-
etry in a RGB-D frame.

3. Method
3.1. Depth Peeling

In this section we briefly recap the depth peeling ap-
proach described in [11]. In computer graphics, depth peel-
ing is a simple approach to achieve correct rendering or-
der of transparent objects, without having to sort objects or
pixel fragments. The algorithm works by utilizing 2 depth
buffers. During each iteration the depth test is performed

Figure 1: Illustration of the depth peeling algorithm. The
bold segments are generated at each iteration. Grayed out
segments are discarded by the depth test.

using the depth buffer from the previous iteration (initial-
ized as 0) and the depth is written to the second buffer. This
ends up ”peeling” of the closest fragment, that has not been
captured by previous iterations. The fragments generated
this way are then usually blended using front-to-back α-
blending. For our purpose we output the UV-coordinates
(and object id for synthetic data) per pixel and pass them to
the deferred neural rendering pipeline.

The number of depth-peeled input texture layers depends
on scene complexity and was chosen conservatively, so no
information would be lost. For most practical applications
4 to 8 layers should be sufficient, as anything beyond that is
most likely occluded.

4. Deferred Neural Rendering

Deferred neural rendering replaces parts of the classical
rendering pipeline with learnable elements [18]. In partic-
ular textures, which in computer graphics contain informa-
tion such as color, opacity, normals and material proper-
ties are replaced by neural textures, which, for each texel
contain a set of latent features. And the fragment stage is
replaced by a rendering network, which takes the sampled
features and predicts the final image. In our work we extend
the pipeline introduced in [18], by having the rendering net-
work not only cover the fragment stage, but also the output
merger stage of the classical rendering pipeline.

We solve the task of novel view synthesis, given (ap-
proximate) 3D scene geometry with valid UV-mapping and
pairs of camera position and RGB frames. At first we fol-
low the classical rendering pipeline using depth peeling (see
subsection 3.1) to generate layers of UV-coordinates. In or-
der to separate the static rendering pipeline from the learn-
able part screen space UV-coordinates are precomputed and
saved per depth peeling layer. They are then passed to our
neural rendering setup. Analogue to classical rendering we
sample our neural texture using bi-linear interpolation. This
is done for each UV-layer separately. Sampled textures
are then concatenated along the feature dimension and in-
put into the rendering network. The learnable part of our
rendering pipeline is fully differentiable and can be trained

2

Figure 2: RGB frame and depth peeled UV-layers. Each object lives in its own UV-space, so we additionally render a
segmentation mask per UV-frame. Note that the chair is approximated by a vary coarse proxy, simulating a bad reconstruction
result. UV-coordinates are mapped to red and green channels. White indicates empty space and is mapped to 0 during
sampling.

end-to-end. The entire problem can be formulated as opti-
mization problem, where we try to find the optimal renderer
R and texture T given scene geometry M and a training
corpus (Ik, pk)Nk consisting of camera poses pk and images
Ik. This leads to Equation 2:

T ∗,R∗ = T,R
argmin

N∑
k

L(Ik, render(pk,M|T,R)) (1)

Where render describes the entire rendering pipeline. The
classical rendering pipeline has no learnable parameters and
we already precomputed the UV-coordinates (uv)Li , where
L is the number of depth peeled layers. This allows us to
shorten the problem to:

T ∗,R∗ = T,R
argmin

N∑
k

L(Ik, Net(sample((uv)Li |T)|R))

(2)
The function sample only uses bi-linear interpolation in our
case, but it can be extended to use hierarchical textures as
shown in [18]. The function L denotes our training loss. In
the following sections we will explain the components of
our neural rendering pipeline in detail.

4.1. Neural Textures

In classical computer graphics textures are used to store
detailed surface information, such as color, opacity, nor-
mals and material properties needed to compute accurate
lighting. During rendering UV-coordinates are computed
for each fragment, which are then used to look up the cor-
responding values in the texture map. Texture values are
interpolated using bi-linear interpolation or tri-linear inter-
polation in the cast of mip-maps. Neural textures work
in the same way: latent features are fetched from high-
dimensional textures according to the computed UV-values
and interpolated using bi-linear interpolation. This inter-
polation scheme is differentiable, which allows us to train
our neural rendering pipeline end-to-end. [18] also imple-
mented a way to use hierarchical textures, which help avoid

minification and magnification problems. The significant
difference here is, that in classical rendering the geome-
try needs to be highly detailed. Normal maps can be used
to render some very fine surface details, without explicitly
modeling them. In neural rendering we can also use coarse
geometry proxies to sample our feature maps. The neural
renderer can then generate fine-scale details.

4.2. Deferred Neural Renderer

We sample our screen space feature maps using the UV-
coordinates obtained by rendering our geometry proxies
with depth peeling. The classical rendering pipeline would
now compute a lighting function to compute the final frag-
ment color and blend the computed fragments together us-
ing alpha-blending. We instead stack the sampled screen
space feature maps along the feature dimension and give
them as input to our neural network. Additionally we can
add the view direction from the camera to our surfaces,
making it easier to compute view dependent effects, such
as specular highlights. While rendering our geometry each
fragments world position is stored in an auxiliary texture at
the computed UV-coordinates. During training these posi-
tion textures P are sampled and the view direction v is com-
puted as the normalized vector from the camera position pk
to the surface position:

v = normalized(pk − sample(uv|P)) (3)

The neural rendering network is at the core of our pipeline.
It takes as input the stacked screen space feature maps and
predicts the final output image. To achieve this it has to
learn a function replacing both the fragment shader and out-
put merger stage of the classical rendering pipeline.

4.3. Network Architecture

[18] proposed using U-nets unet for rendering their
screen space feature maps. For our work, however, these
U-Nets seem to overfit the training data a lot and thus fail
to predict novel views, when trying to extrapolate too far
from the sample distribution. We also found, that when us-

3

ing very coarse geometry proxies, such as simple bound-
ing boxes, U-Nets ended up mapping the view direction to
the output directly and ignoring textures, which ended up
causing severe artifacts when trying to edit the scene. In-
stead, we propose using a per-pixel multi layer perceptron
(MLP), as is done in [17]. These seem to work better for
the extended DNR problem of combining multiple layers of
feature maps to form an output image. Per-pixel networks
also come with the added benefit of being invariant to scal-
ing, as they do not consider the neighborhood of the sam-
pled features. The standard U-Net used in [18] uses about
16 million learnable parameters, whereas our per-pixel net-
works usually have about 40, 000. All of these parameters
are applied to predict each final pixel from the sampled fea-
tures, making it difficult for the networks to overfit and forc-
ing the network learn a more general rendering function,
while shifting the object-specific information into the neu-
ral textures. Per-pixel MLPs can be implemented very ef-
ficiently by building a network of only same convolutions
with a kernel size of (1, 1). As activation function we used
LeakyReLU (α = 0.2). For our textures we used 16 feature
dimensions and the first layer of our MLP uses 256 hidden
units. Two sets of linear layers and non-linearities form a
block and the input of each block is added to its output. Af-
terwards a linear layer is inserted, in which the number of
feature channels is halved. This is analogue to a ResNet
[3] architecture using only 1 × 1 convolutions, when look-
ing at how the network is applied to the entire image, not
just one pixel. Our default network consists of three such
blocks, which is results in about 34k parameters. For sim-
pler scenes we were able to reduce the number of blocks
to one with only a minor loss in quality. We used Batch
Normalization [5] after each linear layer.

4.4. Training

As mentioned previously, our pipeline can be trained
end-to-end. We precompute the UV-maps for each depth
peeling layer and load them at training time. They are
paired with the ground truth RGB image, as well as cam-
era pose to form one data sample. This can be seen in Fig-
ure 2. The UV-maps of our synthetic datasets also contain
a segmentation mask, as each objects has its separate UV-
space, we thus use separate textures for each object. This
does however not impose a limit to real world applicability,
as the system will also work when simply considering the
entire scene as one object, with one unified UV-space and
one large neural texture. UV-maps and masks are used to
select and sample the neural texture. The sampled features
are finally put through the network to generate the output
image, our loss function w.r.t. the ground truth RGB image
is applied to. As our loss we use a combination of L1 and
perceptual loss. Perceptual loss is based on the predicted
features of a standard, image-net pretrained VGG network

Figure 3: Visualisation of our training and test sets. Blue:
training data; Green: Interpolating test set; Red: Extrapo-
lating test set.

[7]. In our experiments we found, that perceptual loss helps
or network to generate finer detailed textures and high fre-
quency light effects (specular highlights). Using only per-
ceptual loss, however, resulted in visibly wrong colors (e.g.
green objects were suddenly blue). Adversarial training
only delivered descent results after an initial training phase
with a more stable loss and a very reduced learning rates.
In our experiments we did not see any significant quality
improvements form using adversarial loss.

As the per-pixel networks used in this paper do not con-
sider neighboring information, we do not need to perform
usual data augmentation steps like random cropping or scal-
ing, which is done for the U-Nets used in [18]. We have
however found, that randomly adding layers of zeroes can
improve generalisation performance in simple scenes, espe-
cially when the order of seen objects does not change very
often. These zero-layers are tensors of the same shape as
our screen space feature maps and they are inserted aligned
with our the sampled texture data. This seems to reduce cor-
relation between textures meaning that the features stored in
the neural textures only describe the corresponding surface
and the network is force to learn something more similar
to a blend function. Without this form of augmentation we
have seen networks produce severe artifacts when trying to
remove objects from the scene.

Our networks and textures are trained using stochastic
gradient descent. In particular, we use the Adam optimizer
[9] and the entire neural pipeline is implemented in PyTorch
[13]. As parameters we use a learning rate of 0.001 and de-
fault Adam parameters, as suggested in [18]. For our ex-
periments with adversarial loss we turned down the initial
learning rate as low as 0.0004.

4

Figure 4: Samples using different extrinsics. Left to
right: No extrinsics, 3D view direction, spherical harmon-
ics, ground truth. The first two rows were taken from the in-
terpolating test set, the last two from the extrapolating one.
We can see that without extrinsics the renderer struggles
to generate specular highlights on the interpolating test set.
When moving to more extreme viewpoints neither approach
manages to capture the highlights. Note that the bottom of
the table was not directly visible in most training images
and thus shows severe artifacts.

4.5. Training Data

All of our training data was generated synthetically us-
ing the Unity3D engine. For our default experiment setups
the training data was sampled from a hemisphere with the
camera looking at the center. The hemisphere usually had
to be cropped, to avoid looking at the scene from below the
floor. We used two test-sets: The interpolating test-sets take
a path through the same hemisphere we sampled the train-
ing data from, whereas the extrapolating tests were gener-
ated by manually walking through the scenes. A visualisa-
tion of the training and test-sets can be seen in ??. To show
our performance given a poor reconstruction we performed
experiments using either bounding boxes or simple, low-
poly, box-like objects which were manually created using
Blender. In all setups we used ground truth camera posi-
tions.

4.6. Extrinsic Parameters

The glossy nature of transparent materials, such as glass,
leads to so-called specular highlights, which can be classi-
fied as high-frequency, view-dependent details and are thus

Interpolating Extrapolating
No extrinsics 33.09 32.96
View vector 33.19 32.99

SH 33.80 32.52

Table 1: Ablation study of auxiliary renderer inputs (cam-
era extrinsics), which are supposed to help with view-
dependent effects including specular highlights. Values
are given in dB and denote the PSNR. The approach us-
ing spherical harmonics performs better on the interpolating
test, but does not generalize as well to more extreme view
points.

very nasty to render. In order for our algorithm to handle
such view-dependent effects we look at two different meth-
ods. The first method directly adds the per-pixel 3D view
vector to the renderers input, whereas the second one uses
the view vector to compute the first three bands of Spheri-
cal Harmonics and adds those as input to the rendering net-
work, as was done in [18]. The process of computing the
view vector was described in subsection 4.2. Note that these
methods add respectively 3 and 9 additional input channels
per depth-peel layer. Samples of our results can be seen in
Figure 4 and the quantitative evaluation based on PSNR [4]
is shown in Table 1. Our experiments showed, that adding
extrinsic information can help with view-dependent effects,
when generating images close to the training corpus. When
synthesizing novel views from points far away from the
training corpus, however, our method still cannot generate
proper specular highlights.

5. Results
5.1. Baseline

In this section we show both qualitatively and quanti-
tatively, that our solution outperforms existing approaches.
Our results are evaluated with the commonly used Peak Sig-
nal to Noise Ratio (PSNR) [4]. There exists not much work
in the area of reconstructing and re-rendering transparent
objects. We thus compare our solution against the original
Deferred Neural Rendering approach by [18], which was
not meant to deal with transparent objects. Surprisingly,
the network is still able to produce descent results. We as-
sume this is due to the large capacity of the UNETs, al-
lowing them to produce an image essentially as a function
of view direction. We do however observe severe blurring
when rendering transparent objects. Samples are shown in
Figure 7. The comparison based on PSNR is shown in Ta-
ble 2, where we can see DNRs quality diminishing when
using the extrapolating dataset, which coincides with our
over-fitting assumption.

We also compare our solution against DeepVoxels [16],
as they accumulate values along a view ray, which at least

5

Figure 5: Training images from running DeepVoxels ([16])
on our dataset (top). Ground Truth (bottom).

Interpolating Extrapolating
DNR 33.52 30.86
Ours 33.19 32.99

Table 2: Comparison of Deferred Neural Rendering to our
approach using PSNR. Values are given in dB.

in theory means, that the algorithm could be able to deal
with transparency. In practice, however, we were only able
to get very blurry and over-smoothed re-renderings of train-
ing images and the algorithm failed to even generalize to
our interpolating test set. These results were achieved after
disabling adversarial loss and only training on L1 loss with
a low learning rate (1e − 5), anything else lead to a total
collapse. Even with these measures not every training run
delivered successful results. We had to stick with the orig-
inal 323 voxel resolution, as DeepVoxels is very memory
intensive, this might also be a reason as for why the algo-
rithm was not able to deal with our complex scene. Note
that DeepVoxels solves the more general problem of novel
view synthesis from only images and poses, whereas we as-
sume geometry to also be known. We thus conclude, that
DeepVoxels, same as a lot of conventional reconstruction
algorithms, is not generally able to handle complex scenes
containing transparent objects. Our results when trying to
use DeepVoxels can be seen in Figure 5.

5.2. Geometry Proxies

All our experiments were performed using synthetic
data, since there were no publicly available real-world
datasets of transparent objects at the time. Analogue to [18]
we tried using coarse geometry proxies to render our ob-
jects. This tests the robustness of our algorithm wrt. ge-
ometry and suggests, that it might also perform well in a

Figure 6: Results when using coarse geometry proxies.
Left: Our results; Right: Ground truth

real-world environment. Our geometry proxies were cre-
ated manually using the 3D modelling tool Blender and are
much worse than what can be expected from state-of-the-art
reconstruction algorithms. Figure 1 gives an idea of such a
proxy. In Figure 6 the chairs geometry is approximated us-
ing a very blocky structure, which can be inferred from the
first two uv-maps.

[18] goes as far as using simple boxes as geometry prox-
ies to show the robustness of their algorithm. We tried to
also apply this idea to, highly complex geometries, which
pose a nightmare even for modern reconstruction algo-
rithms. In particular we looked at plants and trees and tried
to approximate them using simple shapes. While the re-
sults are not good enough for practical use, in our opin-
ion they are quite good when considering the setup: ”Draw
a plant from an ellipsoid”. When looking at the rendered
test set video, transitions between different faces of a proxy
cube caused difficulties for our renderer. We thus decided to
use ellipsoidal proxies instead, which drastically improved
multi-view consistency. Figure 8 shows some samples of a
complex scene, where complex objects were approximated
using only such extreme proxies. These images were cre-
ated using adversarial loss after initialisation with L1 loss
and a texture resolution of 2562 with 64 feature channels,
to accommodate for the increased object difficulty.

6. Limitations
By replacing the U-net renderer of [18] with a per pixel

network our solution is no longer capable of in-painting ar-
eas where little to no surface information is present in the
training set. Figure 4 and Figure 8 both show, rendering
unseen regions leads to severe errors. While completely un-
seen areas, such as the ones Figure 8 can of course never
be re-rendered by any approach, regions like the bottom of

6

Figure 7: Comparison of our results to Deferred Neural Rendering by [18]. Images order (left to right): DNR, ours, ground
truth. Left column was taken from the interpolating dataset, right from the extrapolating.

the table in Figure 4 could at least produce less striking er-
rors, when using an in-painting solution. As a possible rem-
edy for this we could make use of adversarial loss for novel
views, as was done in [16]. Using this approach we would
perform in-paining by using the gradients of a discriminator
network to predict unseen areas.

Another limitation is the reliable generation of specular
highlights. Our results in subsection 4.6 show, that we can-
not generate these effects when rendering novel views from
arbitrary positions.

7. Conclusion

We introduced an extension to Deferred Neural Render-
ing by [18] that allows us to generate novel views of scenes
containing transparent objects. The same solution can also
applied to objects with holes that have been filled by an
imprecise reconstruction algorithm. We compared out per-
pixel MLP networks to the U-Nets used in Deferred Neural
Rendering and provided theoretical reasons and empirical
evidence, why we think per-pixel networks should be used
for this kind of neural rendering approach. Our solution is
capable of generating realistic novel views of scenes with
accurate geometry, and it can also generate results when
only a coarse geometric scene representation is present.
Neural rendering is a very powerful tool and the community
is just beginning to discover its potential. We think our ap-
proach to rendering highly complex objects using primitive
geometry proxies can be improved to also generate photo-

realistic results, allowing us mostly to skip 3D reconstruc-
tion.

8. Future Work

There are many avenues left for the neural rendering
community to explore. Deferred Neural Rendering in our
opinion shows great potential and should be developed fur-
ther. We did some minor experiments in the direction of
super-resolution, the process of generating higher resolu-
tion images from a set of lower resolution inputs. In theory,
using our neural textures and just sampling at higher resolu-
tion should be able to produce results, at least as good as the
low resolution images. Our limited experiments, however,
showed some severe artifacts, so more research in this area
is required.

In this paper we only worked on synthetic data. With the
introduction of ClearGrasp [15] there is now a tool that can
produce reasonably good 3D-reconstructions of transparent
objects. We did not have time to implement this approach in
our pipeline. We strongly believe, that a combination of the
high quality reconstructions obtained with ClearGrasp our
solution can be used to generate photo-realistic novel view
renderings in in-the-wild scenarios.

Using the precomputed UV-maps actually turned out to
be fairly constraining, as they need to be stored using high
accuracy (standard 8-bit color is not enough) and thus they
also need a lot of disk space and loading time. We sug-
gest, that for future experiments it might be beneficial to

7

Figure 8: Rendering highly complex objects using primi-
tive geometry proxies. Plants were approximated using el-
lipsoids; the shelf in the background is approximated using
a simple box. Note, that the test images were taken from
extreme view-points. The training set was again sampled
from a hemisphere in front of the table. Left: Our results;
Right: Ground truth.

render the UV-maps online using a GPU based renderer.
This might speed up the training and inference process sig-
nificantly.

9. Acknowledgement

Our synthetic datasets were generated using the Unity3D
engine. The 3D models and textures used came from vari-
ous artists that made their work freely available on the unity
asset store. Some additional assets were also imported from
www.artec3d.com. Any geometry proxies more complex
than a bounding box were created using Blender.

References
[1] Nicolas Alt, Patrick Rives, and Eckehard Steinbach. Recon-

struction of transparent objects in unstructured scenes with a
depth camera. pages 4131–4135, 09 2013.

[2] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial networks, 2014.

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition, 2015.

[4] A. Horé and D. Ziou. Image quality metrics: Psnr vs. ssim. In
2010 20th International Conference on Pattern Recognition,
pages 2366–2369, 2010.

[5] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift, 2015.

[6] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A.
Efros. Image-to-image translation with conditional adver-
sarial networks. CoRR, abs/1611.07004, 2016.

[7] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual
losses for real-time style transfer and super-resolution. Lec-
ture Notes in Computer Science, page 694–711, 2016.

[8] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks.
CoRR, abs/1812.04948, 2018.

[9] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization, 2014.

[10] Ananya Kumar, S. M. Ali Eslami, Danilo J. Rezende, Marta
Garnelo, Fabio Viola, Edward Lockhart, and Murray Shana-
han. Consistent generative query networks, 2018.

[11] Bavoil Louis and Myers Kevin. Order independent trans-
parency with dual depth peeling. 02 2008.

[12] Mehdi Mirza and Simon Osindero. Conditional generative
adversarial nets, 2014.

[13] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An im-
perative style, high-performance deep learning library. In H.
Wallach, H. Larochelle, A. Beygelzimer, F. dAlché-Buc, E.
Fox, and R. Garnett, editors, Advances in Neural Informa-
tion Processing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc., 2019.

[14] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
CoRR, abs/1505.04597, 2015.

[15] Shreeyak S. Sajjan, Matthew Moore, Mike Pan, Ganesh Na-
garaja, Johnny Lee, Andy Zeng, and Shuran Song. Clear-
grasp: 3d shape estimation of transparent objects for manip-
ulation, 2019.

[16] Vincent Sitzmann, Justus Thies, Felix Heide, Matthias
Nießner, Gordon Wetzstein, and Michael Zollhöfer. Deep-
voxels: Learning persistent 3d feature embeddings. In Proc.
Computer Vision and Pattern Recognition (CVPR), IEEE,
2019.

8

[17] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wet-
zstein. Scene representation networks: Continuous 3d-
structure-aware neural scene representations. In Advances
in Neural Information Processing Systems, 2019.

[18] Justus Thies, Michael Zollhöfer, and Matthias Nießner. De-
ferred neural rendering: Image synthesis using neural tex-
tures. ACM Transactions on Graphics 2019 (TOG), 2019.

[19] Josh Tobin, OpenAI Robotics, and Pieter Abbeel. Geometry-
aware neural rendering, 2019.

[20] Bojian Wu, Yang Zhou, Yiming Qian, Minglun Cong, and
Hui Huang. Full 3d reconstruction of transparent objects.
ACM Transactions on Graphics, 37(4):1–11, Jul 2018.

9

