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1 INTRODUCTION
Real-time markerless facial tracking has been well studied in the
past couple of years. One of the papers on this track was Face2Face
[Thies et al. 2016] which became very popular as it presented a way
to transfer facial expressions to a target face in real-time. To do that,
they fit the parametric face model to target videos offline to get
high quality tracking and reconstruction. Then, they also process
low-resolution webcam frames in real-time and re-enact the target
face.

In our project, wemanaged to fit the parametric face model offline,
which is the first part of Face2Face as explained above. In order to
do that, we make use of analysis-by-synthesis approach where we
optimize for face parameters to make it look like target face. We run
all the computational parts of our pipeline on GPU using CUDA and
OpenGL. Our energy function consists of a sparse landmark term, a
dense photometric term and a regularizer term. This energy function
is minimized using iteratively reweighted least squares method
(IRLS). Each Gauss-Newton update is solved using preconditioned
conjugate gradients method (PCG).

2 PARAMETRIC FACE MODEL
Matching a 3D surface to a given face image is a highly ill-posed
problem. One of the methods to deal with it is using parametric
models [Blanz and Vetter 1999], which not only allow to generate
new faces, but also constrain the solution to stay within the vector
space spanned by the database. Those models are usually crafted
using high quality scans of real faces or different body parts such as
eyes, teeth etc., depending on a given reconstruction problem. The
database used in this project was taken from [Blanz and Vetter 1999],
where the authors used 200 scanned heads of young adults to create
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a statistical face model by using Principal Component Analysis1.
The final parametric face model looks as follows:

𝑀𝑔𝑒𝑜 (𝜶 , 𝜹) = 𝒂𝑖𝑑 + 𝐸𝑖𝑑 · 𝜶 + 𝐸𝑒𝑥𝑝 · 𝜹,
𝑀𝑎𝑙𝑏 (𝜷) = 𝒂𝑎𝑙𝑏 + 𝐸𝑎𝑙𝑏 · 𝜷 (1)

Where 𝒂𝑖𝑑 ∈ R3𝑛 and 𝒂𝑎𝑙𝑏 ∈ R3𝑛 describe the average face shape
and albedo. The Eigen basis are, 𝑬𝑖𝑑 ∈ R3𝑛×80 for shape, 𝑬𝑒𝑥𝑝 ∈
R3𝑛×76 for expression and 𝑬𝑎𝑙𝑏 ∈ R3𝑛×80 for albedo. The coeffi-
cients (𝜶 , 𝜹, 𝜷) describe the deviation from the average model and
can be used to generate new faces or optimized to fit the model to
a given target actor. The final face generator configuration vector
is defined as follows: P = (𝜶 , 𝜹, 𝜷,Φ, 𝛾, 𝜅), where Φ is pose ma-
trix with rotation and translation, 𝛾 is illumination parameters and
virtual camera field of view is defined as 𝜅.

3 ENERGY FORMULATION
To find the best vector P for the face model, robust variational
optimization is used. The goal is to minimize the highly non-linear
objective function, composed of the following components:

𝐸 (P) = 𝑤𝑐𝑜𝑙𝐸𝑐𝑜𝑙 (P) +𝑤𝑙𝑎𝑛𝐸𝑙𝑎𝑛 (P) +𝑤𝑟𝑒𝑔𝐸𝑟𝑒𝑔 (P) (2)

The first two terms 𝑤𝑐𝑜𝑙𝐸𝑐𝑜𝑙 (P) and 𝑤𝑙𝑎𝑛𝐸𝑙𝑎𝑛 (P) measure the
distance between the synthetic image created by the program and
the target video image considering photo-consistency and facial
feature alignment, respectively. Additionally, a statistical regularizer
𝐸𝑟𝑒𝑔 is incorporated into the energy function. This is based on the
assumption, that faces in the database are normally distributed and
the solution should not deviate too far from the mean face.

𝐸𝑟𝑒𝑔 (P) =
80∑
𝑖=1

[(
𝜶 𝑖

𝜎𝑖𝑑,𝑖

)2
+
(

𝜷𝑖
𝜎𝑎𝑙𝑏,𝑖

)2]
+

76∑
𝑖=1

(
𝜹𝑖

𝜎𝑒𝑥𝑝,𝑖

)2
(3)

This commonly used regularization strategy prevents degenera-
tions of the facial geometry and color, and guides the optimization
strategy out of local minima [Thies et al. 2016].

3.1 Sparse Features
In order to provide a good initialization and stabilize our recon-
struction, sparse features alignment was incorporated to the energy
function. Sparse features are salient, easily detectable landmarks
of a face — for instance corners of eyes or lips. To find those land-
marks, a tracker based on machine learning was used [Kazemi and
Sullivan 2014]. The energy term is measured in screen space and
the formulation is as follows:

𝐸𝑙𝑎𝑛 (P) = 1
|𝐹 |

∑
𝑓𝑗 ∈𝐹

| |𝑓𝑗 − 𝜋 (Φ(𝒗 𝑗 )) | |22 (4)

1Principal Component Analysis is a dimensionality reduction technique that can be
used to reduce a large set of data points to a small set that still contains most of the
information in the large set.
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Where𝜋 (Φ(𝒗 𝑗 )) describes the vertex transformation from local coor-
dinate space to NDC2. The function 𝜋 applies the projection matrix,
and performs the perspective division and the matrix Φ describes
the rigid pose matrix. This term helps to avoid local minima in the
complex energy landscape generated by the photo-consistency error
[Thies et al. 2016].
In order to minimize the energy function, the sparse term has

to be derived w.r.t our parameter vector. Thus, we should obtain
the Jacobian matrix for expression, shape, pose and field of view
for an OpenGL virtual camera. Since the projection is composed of
many functions, the chain rule has to be used. The derivation w.r.t
𝛼 , which is responsible for shape morphing, looks as follows:

𝜕𝐸𝑙𝑎𝑛

𝜕𝛼
=

𝜕𝜋 (Φ(𝑀𝑔𝑒𝑜 (𝜶 , 𝜹)))
𝜕Φ(𝑀𝑔𝑒𝑜 (𝜶 , 𝜹))

𝜕Φ(𝑀𝑔𝑒𝑜 (𝜶 , 𝜹))
𝜕𝑀𝑔𝑒𝑜 (𝜶 , 𝜹)

𝜕𝑀𝑔𝑒𝑜 (𝜶 , 𝜹)
𝜕𝛼

(5)

The formula for the expression vector 𝜹 works analogous. Moreover,
the pose matrix Φ has to be also derived in this chain, therefore, we
can branch out in the computation graph from the second step and
obtain:

𝜕𝐸𝑙𝑎𝑛

𝜕Φ
=

𝜕𝜋 (Φ(𝑹, 𝑻 ))
𝜕Φ(𝑹, 𝑻 )

𝜕Φ(𝑹, 𝑻 )
𝜕𝑹, 𝑻

(6)

Where 𝑹, 𝑻 describe rotation and translation. The virtual camera
field of view parameter (FoV) is derived from the projection matrix.
We define perspective division as𝜓 and the projection matrix from
world space to screen space as Π. In this way 𝜋 is decomposed into
𝜋 = 𝜓 (Π(𝐹𝑜𝑉 )) and the derivation can be denoted as:

𝜕𝐸𝑙𝑎𝑛

𝜕𝐹𝑜𝑉
=

𝜕𝜋

𝜕𝐹𝑜𝑉
=

𝜕𝜓 (Π(𝐹𝑜𝑉 ))
𝜕Π

𝜕Π

𝜕𝐹𝑜𝑉
(7)

3.2 Dense Features
Dense features are the most important term in the optimization pro-
cess, as they allow us to reconstruct color, light and fine geometric
details. They are based on a per-pixel photometric alignment error.

𝐸𝑐𝑜𝑙 (P) = 1
|𝑉 |

∑
𝑝∈𝑉

| |𝐶𝑆 (𝒑) −𝐶𝐼 (𝒑) | |2 (8)

Here 𝐶𝑆 is the synthesized image, 𝐶𝐼 is the input RGB image and
𝒑 ∈ 𝑉 denotes all pixels covered by our rendered face model. To
reduce the influence of outliers, a 𝐿2,1 norm is used instead of a
least-squares formulation. The computation graph starts with the
two composed functions:

𝜕𝐶𝑆

𝜕P

− 𝜕𝐶𝐼

𝜕P

(9)

The dense term contributes with all parameter derivatives of the
vector P = (𝜶 , 𝜹, 𝜷,Φ, 𝛾, 𝜅) to the Jacobian matrix, whereas the
sparse term was not derived w.r.t the illumination model parame-
ters and albedo. Ultimately, for every pixel the Jacobian entry w.r.t
vectorP is calculated. The photo-consistency term basically derives
the entire rendering pipeline, since it is defined on the pixel level.
Therefore, it is necessary to take a closer look into pixel formation
during rasterization-based rendering.
2Normalized Device Coordinates is a space obtained by applying perspective projection
and it is usually represented by a unit cube which ranges between -1 and 1.

4 FORWARD RENDERING
The parametric face model is rendered using standard, rasterization-
based rendering. As graphics framework, the OpenGL API was
chosen. The approach of analysis-by-synthesis expects to gather
some intermediate information from the rendering pipeline. For
each pixel in the final image, barycentric coordinates and vertex
identifiers of the corresponding triangle have to be stored, because
the position of a vertex is a function of the parametric face model.
This is necessary, as during rasterization process the pixels are
computed by barycentric interpolation of the triangles per-vertex
attributes, such as color and normals. Barycentric coordinates reflect
the center of mass which is our pixel (𝑃) and are calculated as a ratio
of the areas of 𝑃𝐵𝐶 , 𝑃𝐶𝐴 and 𝑃𝐴𝐵 to the area of the entire triangle
𝐴𝐵𝐶 . Therefore, all those steps have to be included in the chain rule
derivations. In order to store this per pixel information, additional
render targets are used. For each optimization step 3 textures are
rendered, containing the aforementioned parameters and the ac-
tual color image. They are then used in the analysis/differentiable
rendering step to compute the Jacobian matrix and residuals.
We would like to emphasize a point about barycentric interpo-

lation which is done automatically in the OpenGL pipeline. Since
interpolation in 3D world space and in 2D image space is not the
same, OpenGL applies perspectively correct linear interpolation.
This makes interpolation in the image space effectively the same
as interpolation in 3D world space. Thus, one should be very care-
ful to account for this perspective correction, which is implicitly
employed in the pipeline, when going backwards to calculate the
jacobian matrices.

4.1 Differentiable Rendering
Differentiable rendering allows us to compute the gradients of our
final pixels w.r.t. the input vertices. In particular gradients have to
flow through the fragment shader, the rasterization stage (barycen-
tric interpolation and perspective projection) and the vertex shader.
The model is a vector-valued function, thus, the change is reflected
by a Jacobian matrix. In our case the vertex shader applies the pose
matrix Φ and the fragment shader computes Equation 10.

𝑐𝑜𝑙𝑜𝑟 = 𝑙𝑖𝑔ℎ𝑡 (𝑛𝑜𝑟𝑚𝑎𝑙) ∗ 𝑎𝑙𝑏𝑒𝑑𝑜 (10)

Where 𝑙𝑖𝑔ℎ𝑡 is approximated by the first 3 bands of spherical har-
monics3 and calculated based on the normal for a given fragment.
To compute the Jacobian matrix of the model, 𝑐𝑜𝑙𝑜𝑟 has to be derived
w.r.t all model parameters: albedo, shape, expression, FoV, pose, and
light. This task requires derivation of the whole shader pipeline,
starting with fragment shader.
In summary, the vertex position is a function of the parametric

model and the normal used for shading is a function of the corre-
sponding face, which is again described by 3 vertices.4

5 OPTIMISATION
Once all gradients of final image w.r.t. the model parameters are
calculated, meaning, the Jacobian matrix is built, the loss function is

3Light transport involves many quantities defined over the spherical and hemispherical
domains, making spherical harmonics a natural basis for representing these functions.
4Given face defined as tuple of 3 vertices (𝑎,𝑏, 𝑐) then 𝑛𝑜𝑟𝑚𝑎𝑙 = (𝑏 − 𝑎) × (𝑐 − 𝑎) .
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minimized to fit the model. Therefore, this section elaborates details
on how the energy function is minimized.

5.1 Iteratively Reweighted Least squares (IRLS)
Iteratively Reweighted Least Squares is used to optimize objective
functions that take the form of a 𝑝-norm5. This is done by using
Equation 11, which transforms the problem into a weighted least
squares problem at each iteration, where theweight is defined as𝑤 =

∥𝑟 (P𝑜𝑙𝑑 )∥𝑝−2. Finally, an optimization update step is solved using
the Gauss-Newton (GN) method, Equation 12. During development
two different 𝑝-norms were tested, namely, 1-norm and 2-norm. The
1-norm turned out to be more robust and delivered better visual
results.

∥𝑟 (P)∥𝑝 = ∥𝑟 (P𝑜𝑙𝑑 )∥𝑝−2 · ∥𝑟 (P)∥22 (11)

ΔP𝑘 = −(𝑱𝑇𝑾𝑱 )−1 𝑱𝑇𝑾𝒇

P𝑘+1 = P𝑘 + ΔP𝑘

(12)

In the equations above 𝑱 denotes Jacobian matrix, 𝒇 is the residual
vector,𝑾 is the weight matrix and P is the face model parameters
vector.

Additionally, we use a coarse to fine approach to optimize our
energy function. These approaches are known for helping to avoid
local minima. They also allow us to speed up computation, by re-
ducing the number of equations to solve per iteration. The OpenCV
library was used to create a Gaussian image pyramid6. The final
pyramid consists of three levels. We run 25 IRLS iterations on the
coarsest level, 5 on the middle one and 1 iteration on the finest level.

5.2 Preconditioned Conjugate Gradients (PCG)
The standard form of the Gauss-Newton update for a weighted
least squares problem ,shown in (Equation 12), involves the inver-
sion of the matrix 𝑱𝑇 𝑱 . In addition to this being numerically unsta-
ble, the runtime complexity of matrix inversion lies in O(𝑛3) for
Gauss–Jordan elimination method. To avoid this, Equation 12 can
be reformulated as 𝑱𝑇 𝑱 𝜹 = −𝑱𝑇𝒇 . This can then be solved using,
for example Conjugate Gradients. Furthermore the system can be
preconditioned [Kaasschieter 1988] to allow for faster convergence
of this iterative method. The preconditioned system is defined as
follows:

𝑴−1 𝑱𝑇 𝑱 𝜹 = −𝑴−1 𝑱𝑇𝒇 (13)

The symmetric positive definite matrix 𝑴 must be chosen in such a
way that the system 𝑴𝒛 = 𝒓 can be solved with less computational
work than the original system 𝑱𝑇 𝑱 𝜹 = −𝑱𝑇𝒇 for every vector 𝒓 on
the right-hand side. For this purpose a Jacobi preconditioner given
as 𝑴 = 𝑑𝑖𝑎𝑔(𝑱𝑇 𝑱 )−1 was selected, which fulfills the requirement,
since the inverse of a diagonal matrix 𝑫 = 𝑑𝑖𝑎𝑔(𝑱𝑇 𝑱 ) is obtained
by replacing each element in the diagonal with its reciprocal.
Figure 1 shows a general form of the PCG algorithm, where the

matrix 𝑴 is the preconditioner. 𝑨 is the system matrix, in our case
this is equal to 𝑱𝑇 𝑱 , and 𝒙 corresponds to our update vector 𝜹 . Note,
that we do not compute 𝑱𝑇 𝑱 explicitly, but instead apply 𝑱 and 𝑱𝑇

5Let 𝑥 = (𝑥𝑖 ) ∈ R𝑛 and 𝑝 ⩾ 1, the 𝑝-norm is defined as | |𝑥𝑝 | | :=
(∑𝑛

𝑖=1 |𝑥𝑖 |𝑝
)1/𝑝

6Subsequent images are weighted down using a Gaussian average (Gaussian blur) and
scaled down.

consecutively to our solution vector 𝒙 at each iteration. Finally, for
each Gauss-Newton step, 5 iterations of PCG are computed, before
applying the update.

Fig. 1. Preconditioned conjugate gradients algorithm [Shewchuk 1994].

6 RESULTS
In this section some of the final results are presented. For more
results and videos please refer to our presentation. The best perfor-
mance of ourmodel is achieved for scenes where the headmovement
is smooth and there are no face occlusions such as glasses or facial
hair. Therefore, a good source of target videos is politicians giving
interviews or public speeches.

Fig. 2. Showcase of our face reconstruction implementation based on Hilary
Clinton.

Figure 2 shows 3 different frames of Hilary Clinton during a
public speech. The face models quite nicely reflects her physique,
but it is still easy to spot some subtle difference. The problem is
caused by the age of the target which is not reflected in the model
basis (only young adults faces).
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Fig. 3. Showcase of our face reconstruction implementation based on Justin
Trudeau.

One of the best results is presented in Figure 3, both, in the case
of quality and expression tracking. Because, the target actor fits
in the range of the model basis, the optimization is able to almost
perfectly find the vector P for the generator. This example shows,
how important it is, that the target lies within the space described
by the statistical model. If the model database were to contain more
diverse faces (not only young adults), the greater variety of target
actors could be reconstructed.

6.1 Failure Cases
Figure 4 and Figure 5 show cases in which the quality of our recon-
struction severely suffers, due to features, that cannot be explained
by the model. The presence of facial hair poses a significant diffi-
culty for facial reconstruction. Glasses also cause problems, as they
occlude parts of the face and distort the region around the eyes.
Furthermore, since our model is only based on young people, some
features of older people cannot be explained and end up degrading
the overall reconstruction quality.

Fig. 4. Facial hair and glasses cause the model to fail.

Fig. 5. The model cannot explain facial features that occur with advanced
age.

7 CONCLUSION
The approach used in this project is based on non-linear optimiza-
tion techniques and the analysis-by-synthesis concept. It is an old
method, already used by Blanz and Vetter more than 20 years ago,
however, it still produces very plausible results by today’s standards.
Nowadays, more sophisticated methods can be used to create digital
faces. Usually, those methods are based on neural rendering and
generative adversarial networks [Thies et al. 2019]. A model for
general face reconstruction requires a database much bigger and
more diverse than 200 scans of young people. For instance, faces
of old people are impossible to capture because they simply don’t
exist in our face generator basis space. Another problem is facial
hair, which also introduces reconstruction problems and requires
a different approach. Therefore, this method works very good for
faces of young people.

7.1 Contributions
Wojciech: sparse terms, OpenGL, CUDA
Mustafa: dense terms, OpenGL, CUDA
Patrick: optimization, OpenGL, CUDA

8 CODE REPOSITORY
Sources code can be reached from github.com/isikmustafa/face-
tracking.
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